We study the Riesz (a,p)-capacity of the so called Dobinski set. We characterize the values of the parameters a and p for which the (a,p)-Riesz capacity of the Dobínski set is positive. In particular we show that the Dobínski set has positive logarithmic capacity, thus answering a question of Dayan, Fernandez and Gonzalez.We approach the problem by considering the dyadic analogues of the Riesz (a,p)-capacities which seem to be better adapted to the problem.

Arcozzi, N., Chalmoukis, N. (2022). Riesz capacities of a set due to Dobinski. COMPTES RENDUS MATHÉMATIQUE, 360(1), 679-685 [10.5802/crmath.332].

Riesz capacities of a set due to Dobinski

Chalmoukis, N
2022

Abstract

We study the Riesz (a,p)-capacity of the so called Dobinski set. We characterize the values of the parameters a and p for which the (a,p)-Riesz capacity of the Dobínski set is positive. In particular we show that the Dobínski set has positive logarithmic capacity, thus answering a question of Dayan, Fernandez and Gonzalez.We approach the problem by considering the dyadic analogues of the Riesz (a,p)-capacities which seem to be better adapted to the problem.
Articolo in rivista - Articolo scientifico
Diophantine approxmation; Dobinski set; Dyadic capacity; Logarithmic capacity; Non-linear capacity; Riesz capacity;
English
22-giu-2022
2022
360
1
679
685
none
Arcozzi, N., Chalmoukis, N. (2022). Riesz capacities of a set due to Dobinski. COMPTES RENDUS MATHÉMATIQUE, 360(1), 679-685 [10.5802/crmath.332].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/401716
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
Social impact