Tokamak operational regimes with small edge localized modes (ELMs) could be a solution to the problem of large transient heat loads in fusion reactors. A ballooning mode near the last closed flux surface governed by the pressure gradient and the magnetic shear there has been proposed for small ELMs. In this Letter, we experimentally investigate several stabilizing effects near the last closed flux surface and present linear ideal simulations that indeed develop ballooninglike fluctuations there and connect them with nonlinear resistive simulations. The dimensionless parameters of the small ELM regime in the region of interest are very similar to those in a reactor, making this regime the ideal exhaust scenario for a future device.
Harrer, G., Faitsch, M., Radovanovic, L., Wolfrum, E., Albert, C., Cathey, A., et al. (2022). Quasicontinuous Exhaust Scenario for a Fusion Reactor: The Renaissance of Small Edge Localized Modes. PHYSICAL REVIEW LETTERS, 129(16) [10.1103/PhysRevLett.129.165001].
Quasicontinuous Exhaust Scenario for a Fusion Reactor: The Renaissance of Small Edge Localized Modes
Cavedon M.;
2022
Abstract
Tokamak operational regimes with small edge localized modes (ELMs) could be a solution to the problem of large transient heat loads in fusion reactors. A ballooning mode near the last closed flux surface governed by the pressure gradient and the magnetic shear there has been proposed for small ELMs. In this Letter, we experimentally investigate several stabilizing effects near the last closed flux surface and present linear ideal simulations that indeed develop ballooninglike fluctuations there and connect them with nonlinear resistive simulations. The dimensionless parameters of the small ELM regime in the region of interest are very similar to those in a reactor, making this regime the ideal exhaust scenario for a future device.File | Dimensione | Formato | |
---|---|---|---|
10281-401002_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
2.54 MB
Formato
Adobe PDF
|
2.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.