The use of 3D cancer models will have both ethical and economic impact in drug screening and development, to promote the reduction of the animals employed in preclinical studies. Nevertheless, to be effective, such cancer surrogates must preserve the physiological relevance of the in vivo models in order to provide realistic information on drugs’ efficacy. To figure out the role of the architecture and composition of 3D cancer models on their tumor-mimicking capability, here we studied the efficacy of doxorubicin (DOX), a well-known anticancer molecule in two different 3D cancer models: our 3D breast cancer microtissue (3D-μTP) versus the golden standard represented by spheroid model (sph). Both models were obtained by using cancer associated fibroblast (CAF) and breast cancer cells (MCF-7) as cellular component. Unlike spheroid model, 3D-μTP was engineered in order to induce the production of endogenous extracellular matrix by CAF. 3D-μTP have been compared to spheroid in mono- (MCF-7 alone) and co-culture (MCF-7/CAF), after the treatment with DOX in order to study cytotoxicity effect, diffusional transport and expression of proteins related to cancer progression. Compared to the spheroid model, 3D-μTP showed higher diffusion coefficient of DOX and lower cell viability. Also, the expression of some tumoral biomarkers related to cell junctions were different in the two models. Statements of Significance: Cancer biology has made progress in unraveling the mechanism of cancer progression, anyway the most of the results are still obtained by 2D cell cultures or animal models, that do not faithfully copycat the tumor microenvironment. The lack of correlation between preclinical models and in vivo organisms negatively influences the clinical efficacy of chemotherapeutic drugs. Consequently, even if a huge amount of new drugs has been developed in the last decades, still people are dying because of cancer. Pharmaceutical companies are interested in 3D tumor model as valid alternative in drug screening in preclinical studies. However, a 3D tumor model that completely mimics tumor heterogeneity is still far to achieve. In our work we compare 3D human breast cancer microtissues and spheroids in terms of response to doxorubicin and drug diffusion. We believe that our results are interesting because they highlight the potential role of the proposed tumor model in the attempts to improve efficacy tests.

Brancato, V., Gioiella, F., Imparato, G., Guarnieri, D., Urciuolo, F., Netti, P. (2018). 3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro. ACTA BIOMATERIALIA, 75, 200-212 [10.1016/j.actbio.2018.05.055].

3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro

BRANCATO, VIRGINIA;
2018

Abstract

The use of 3D cancer models will have both ethical and economic impact in drug screening and development, to promote the reduction of the animals employed in preclinical studies. Nevertheless, to be effective, such cancer surrogates must preserve the physiological relevance of the in vivo models in order to provide realistic information on drugs’ efficacy. To figure out the role of the architecture and composition of 3D cancer models on their tumor-mimicking capability, here we studied the efficacy of doxorubicin (DOX), a well-known anticancer molecule in two different 3D cancer models: our 3D breast cancer microtissue (3D-μTP) versus the golden standard represented by spheroid model (sph). Both models were obtained by using cancer associated fibroblast (CAF) and breast cancer cells (MCF-7) as cellular component. Unlike spheroid model, 3D-μTP was engineered in order to induce the production of endogenous extracellular matrix by CAF. 3D-μTP have been compared to spheroid in mono- (MCF-7 alone) and co-culture (MCF-7/CAF), after the treatment with DOX in order to study cytotoxicity effect, diffusional transport and expression of proteins related to cancer progression. Compared to the spheroid model, 3D-μTP showed higher diffusion coefficient of DOX and lower cell viability. Also, the expression of some tumoral biomarkers related to cell junctions were different in the two models. Statements of Significance: Cancer biology has made progress in unraveling the mechanism of cancer progression, anyway the most of the results are still obtained by 2D cell cultures or animal models, that do not faithfully copycat the tumor microenvironment. The lack of correlation between preclinical models and in vivo organisms negatively influences the clinical efficacy of chemotherapeutic drugs. Consequently, even if a huge amount of new drugs has been developed in the last decades, still people are dying because of cancer. Pharmaceutical companies are interested in 3D tumor model as valid alternative in drug screening in preclinical studies. However, a 3D tumor model that completely mimics tumor heterogeneity is still far to achieve. In our work we compare 3D human breast cancer microtissues and spheroids in terms of response to doxorubicin and drug diffusion. We believe that our results are interesting because they highlight the potential role of the proposed tumor model in the attempts to improve efficacy tests.
Articolo in rivista - Articolo scientifico
3D breast cancer model; Doxorubicin; Extracellular matrix; Microtissues;
English
2018
75
200
212
none
Brancato, V., Gioiella, F., Imparato, G., Guarnieri, D., Urciuolo, F., Netti, P. (2018). 3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro. ACTA BIOMATERIALIA, 75, 200-212 [10.1016/j.actbio.2018.05.055].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/399939
Citazioni
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 56
Social impact