The manuscript is an overview of the motivations and foundations lying behind Voevodsky's ideas of constructing categories similar to the ordinary topological homotopy categories. The objects of these categories are strictly related to algebraic varieties and preserve some of their algebraic invariants.

Borghesi, S. (2007). Cohomology operations and algebraic geometry. In M. Ando, N. Minami, J. Morava, W.S. Wilson (a cura di), Geometry & Topology Monographs (pp. 75-115). Berkeley : Math­em­at­ic­al Sci­ences Pub­lish­ers [10.2140/gtm.2007.10.75].

Cohomology operations and algebraic geometry

BORGHESI, SIMONE
2007

Abstract

The manuscript is an overview of the motivations and foundations lying behind Voevodsky's ideas of constructing categories similar to the ordinary topological homotopy categories. The objects of these categories are strictly related to algebraic varieties and preserve some of their algebraic invariants.
Capitolo o saggio
motivic cohomology, motivic Steenrod algebra, sheaves, model category
English
Geometry & Topology Monographs
Ando, M; Minami, N; Morava ,J; Wilson, WS
2007
10
75
115
Borghesi, S. (2007). Cohomology operations and algebraic geometry. In M. Ando, N. Minami, J. Morava, W.S. Wilson (a cura di), Geometry & Topology Monographs (pp. 75-115). Berkeley : Math­em­at­ic­al Sci­ences Pub­lish­ers [10.2140/gtm.2007.10.75].
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/39939
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact