We review evolutionary models on quantum graphs expressed by linear and nonlinear partial differential equations. Existence and stability of the standing waves trapped on quantum graphs are studied by using methods of the variational theory, dynamical systems on a phase plane, and the Dirichlet-to-Neumann mappings.

Kairzhan, A., Noja, D., Pelinovsky, D. (2022). Standing waves on quantum graphs. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 55(24) [10.1088/1751-8121/ac6c60].

Standing waves on quantum graphs

Noja D.;
2022

Abstract

We review evolutionary models on quantum graphs expressed by linear and nonlinear partial differential equations. Existence and stability of the standing waves trapped on quantum graphs are studied by using methods of the variational theory, dynamical systems on a phase plane, and the Dirichlet-to-Neumann mappings.
Articolo in rivista - Review Essay
Dirichlet-to-Neumann mappings; Morse index; nonlinear Schrödinger equation; period function; quantum graphs; standing waves; variational technique;
English
2022
55
24
243001
open
Kairzhan, A., Noja, D., Pelinovsky, D. (2022). Standing waves on quantum graphs. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 55(24) [10.1088/1751-8121/ac6c60].
File in questo prodotto:
File Dimensione Formato  
10281-397691_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/397691
Citazioni
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
Social impact