Video restoration concerns the recovery of a clean video sequence starting from its degraded version. Different video restoration tasks exist, including denoising, deblurring, super-resolution, and reduction of compression artifacts. In this paper, we provide a comprehensive review of the main features of existing video restoration methods based on deep learning. We focus our attention on the main architectural components, strategies for motion handling, and loss functions. We analyze the standard benchmark datasets and use them to summarize the performance of video restoration methods, both in terms of effectiveness and efficiency. In conclusion, the main challenges and future research directions in video restoration using deep learning are highlighted.
Rota, C., Buzzelli, M., Bianco, S., Schettini, R. (2023). Video restoration based on deep learning: a comprehensive survey. ARTIFICIAL INTELLIGENCE REVIEW, 56(6), 5317-5364 [10.1007/s10462-022-10302-5].
Video restoration based on deep learning: a comprehensive survey
Claudio Rota
;Marco Buzzelli;Simone Bianco;Raimondo Schettini
2023
Abstract
Video restoration concerns the recovery of a clean video sequence starting from its degraded version. Different video restoration tasks exist, including denoising, deblurring, super-resolution, and reduction of compression artifacts. In this paper, we provide a comprehensive review of the main features of existing video restoration methods based on deep learning. We focus our attention on the main architectural components, strategies for motion handling, and loss functions. We analyze the standard benchmark datasets and use them to summarize the performance of video restoration methods, both in terms of effectiveness and efficiency. In conclusion, the main challenges and future research directions in video restoration using deep learning are highlighted.File | Dimensione | Formato | |
---|---|---|---|
Rota-2022-Artificial Intelligence Review-VoR.pdf
accesso aperto
Descrizione: Research
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.