We study regular non-semisimple Dubrovin-Frobenius manifolds in dimensions 2, 3, and 4. Our results rely on the existence of special local coordinates introduced by David and Hertling [Ann. Sc. Norm. Super. Pisa, Cl. Sci. 17(5), 1121-1152 (2017)] for regular flat F-manifolds endowed with an Euler vector field. In such coordinates, the invariant metric of the Dubrovin-Frobenius manifold takes a special form, which is the starting point of our construction. We give a complete classification in the case where the Jordan canonical form of the operator of multiplication by the Euler vector field has a single Jordan block, and we reduce the classification problem to a third-order ordinary differential equation and to a system of third-order PDEs in the remaining three-dimensional and four-dimensional cases. In all the cases, we provide explicit examples of Dubrovin-Frobenius potentials.

Lorenzoni, P., Perletti, S. (2022). Regular non-semisimple Dubrovin-Frobenius manifolds. JOURNAL OF MATHEMATICAL PHYSICS, 63(10) [10.1063/5.0094580].

Regular non-semisimple Dubrovin-Frobenius manifolds

Lorenzoni, Paolo;Perletti, Sara
2022

Abstract

We study regular non-semisimple Dubrovin-Frobenius manifolds in dimensions 2, 3, and 4. Our results rely on the existence of special local coordinates introduced by David and Hertling [Ann. Sc. Norm. Super. Pisa, Cl. Sci. 17(5), 1121-1152 (2017)] for regular flat F-manifolds endowed with an Euler vector field. In such coordinates, the invariant metric of the Dubrovin-Frobenius manifold takes a special form, which is the starting point of our construction. We give a complete classification in the case where the Jordan canonical form of the operator of multiplication by the Euler vector field has a single Jordan block, and we reduce the classification problem to a third-order ordinary differential equation and to a system of third-order PDEs in the remaining three-dimensional and four-dimensional cases. In all the cases, we provide explicit examples of Dubrovin-Frobenius potentials.
Articolo in rivista - Articolo scientifico
Dubrovin-Frobenius manifolds, non semisimple product
English
31-ott-2022
2022
63
10
102301
open
Lorenzoni, P., Perletti, S. (2022). Regular non-semisimple Dubrovin-Frobenius manifolds. JOURNAL OF MATHEMATICAL PHYSICS, 63(10) [10.1063/5.0094580].
File in questo prodotto:
File Dimensione Formato  
Lorenzoni-2022-J Math Phys-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 382.72 kB
Formato Adobe PDF
382.72 kB Adobe PDF Visualizza/Apri
Lorenzoni-2022-J Math Phys-VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Altro
Dimensione 785.08 kB
Formato Adobe PDF
785.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/397217
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
Social impact