We select a sample of Milky Way (MW) mass haloes from a high-resolution version of the EAGLE simulation to study their inner dark matter (DM) content and how baryons alter it. As in previous studies, we find that all haloes are more massive at the centre compared to their dark matter-only (DMO) counterparts at the present day as a result of the dissipational collapse of baryons during the assembly of the galaxy. However, we identify two processes that can reduce the central halo mass during the evolution of the galaxy. First, gas blowouts induced by active galactic nuclei feedback can lead to a substantial decrease of the central DM mass. Secondly, the formation of a stellar bar and its interaction with the DM can induce a secular expansion of the halo; the rate at which DM is evacuated from the central region by this process is related to the average bar strength, and the time-scale on which it acts determines how much the halo has decontracted. Although the inner regions of the haloes we have investigated are still more massive than their DMO counterparts at z = 0, they are significantly less massive than in the past and less massive than expected from the classic adiabatic contraction model. Since the MW has both a central supermassive black hole and a bar, the extent to which its halo has contracted is uncertain. This may affect estimates of the mass of the MW halo and of the expected signals in direct and indirect DM detection experiments.

Victor, J., BENITEZ LLAMBAY, A., Shaun, C., Carlos, F. (2022). Baryon-driven decontraction in Milky Way mass haloes. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 511(3), 3910-3921 [10.1093/mnras/stac312].

Baryon-driven decontraction in Milky Way mass haloes

Alejandro Benitez-Llambay
Secondo
;
2022

Abstract

We select a sample of Milky Way (MW) mass haloes from a high-resolution version of the EAGLE simulation to study their inner dark matter (DM) content and how baryons alter it. As in previous studies, we find that all haloes are more massive at the centre compared to their dark matter-only (DMO) counterparts at the present day as a result of the dissipational collapse of baryons during the assembly of the galaxy. However, we identify two processes that can reduce the central halo mass during the evolution of the galaxy. First, gas blowouts induced by active galactic nuclei feedback can lead to a substantial decrease of the central DM mass. Secondly, the formation of a stellar bar and its interaction with the DM can induce a secular expansion of the halo; the rate at which DM is evacuated from the central region by this process is related to the average bar strength, and the time-scale on which it acts determines how much the halo has decontracted. Although the inner regions of the haloes we have investigated are still more massive than their DMO counterparts at z = 0, they are significantly less massive than in the past and less massive than expected from the classic adiabatic contraction model. Since the MW has both a central supermassive black hole and a bar, the extent to which its halo has contracted is uncertain. This may affect estimates of the mass of the MW halo and of the expected signals in direct and indirect DM detection experiments.
Articolo in rivista - Articolo scientifico
dark matter; galaxies: bar; galaxies: evolution;
English
3910
3921
12
Victor, J., BENITEZ LLAMBAY, A., Shaun, C., Carlos, F. (2022). Baryon-driven decontraction in Milky Way mass haloes. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 511(3), 3910-3921 [10.1093/mnras/stac312].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/396281
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
Social impact