Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic. Besides virus intrinsic characteristics, the host genetic makeup is predicted to account for the extreme clinical heterogeneity of the disease, which is characterized, among other manifestations, by a derangement of hemostasis associated with thromboembolic events. To date, large-scale studies confirmed that genetic predisposition plays a role in COVID-19 severity, pinpointing several susceptibility genes, often characterized by immunologic functions. With these premises, we performed an association study of common variants in 32 hemostatic genes with COVID-19 severity. We investigated 49,845 single-nucleotide polymorphism in a cohort of 332 Italian severe COVID-19 patients and 1668 controls from the general population. The study was conducted engaging a class of students attending the second year of the MEDTEC school (a six-year program, held in collaboration between Humanitas University and the Politecnico of Milan, allowing students to gain an MD in Medicine and a Bachelor’s Degree in Biomedical Engineering). Thanks to their willingness to participate in the fight against the pandemic, we evidenced several suggestive hits (p < 0.001), involving the PROC, MTHFR, MTR, ADAMTS13, and THBS2 genes (top signal in PROC: chr2:127192625:G:A, OR = 2.23, 95%CI = 1.50–3.34, p = 8.77 × 10−5). The top signals in PROC, MTHFR, MTR, ADAMTS13 were instrumental for the construction of a polygenic risk score, whose distribution was significantly different between cases and controls (p = 1.62 × 10−8 for difference in median levels). Finally, a meta-analysis performed using data from the Regeneron database confirmed the contribution of the MTHFR variant chr1:11753033:G:A to the predisposition to severe COVID-19 (pooled OR = 1.21, 95%CI = 1.09–1.33, p = 4.34 × 10−14 in the weighted analysis).

Cappadona, C., Paraboschi, E., Ziliotto, N., Bottaro, S., Rimoldi, V., Gerussi, A., et al. (2021). MEDTEC students against coronavirus: Investigating the role of hemostatic genes in the predisposition to COVID-19 severity. JOURNAL OF PERSONALIZED MEDICINE, 11(11) [10.3390/jpm11111166].

MEDTEC students against coronavirus: Investigating the role of hemostatic genes in the predisposition to COVID-19 severity

Ziliotto N.;Gerussi A.;Invernizzi P.;
2021

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic. Besides virus intrinsic characteristics, the host genetic makeup is predicted to account for the extreme clinical heterogeneity of the disease, which is characterized, among other manifestations, by a derangement of hemostasis associated with thromboembolic events. To date, large-scale studies confirmed that genetic predisposition plays a role in COVID-19 severity, pinpointing several susceptibility genes, often characterized by immunologic functions. With these premises, we performed an association study of common variants in 32 hemostatic genes with COVID-19 severity. We investigated 49,845 single-nucleotide polymorphism in a cohort of 332 Italian severe COVID-19 patients and 1668 controls from the general population. The study was conducted engaging a class of students attending the second year of the MEDTEC school (a six-year program, held in collaboration between Humanitas University and the Politecnico of Milan, allowing students to gain an MD in Medicine and a Bachelor’s Degree in Biomedical Engineering). Thanks to their willingness to participate in the fight against the pandemic, we evidenced several suggestive hits (p < 0.001), involving the PROC, MTHFR, MTR, ADAMTS13, and THBS2 genes (top signal in PROC: chr2:127192625:G:A, OR = 2.23, 95%CI = 1.50–3.34, p = 8.77 × 10−5). The top signals in PROC, MTHFR, MTR, ADAMTS13 were instrumental for the construction of a polygenic risk score, whose distribution was significantly different between cases and controls (p = 1.62 × 10−8 for difference in median levels). Finally, a meta-analysis performed using data from the Regeneron database confirmed the contribution of the MTHFR variant chr1:11753033:G:A to the predisposition to severe COVID-19 (pooled OR = 1.21, 95%CI = 1.09–1.33, p = 4.34 × 10−14 in the weighted analysis).
Articolo in rivista - Articolo scientifico
Association analysis; COVID-19; Hemostatic genes; Meta-analysis; MTHFR; Polygenic risk score; SARS-CoV-2;
English
2021
11
11
1166
open
Cappadona, C., Paraboschi, E., Ziliotto, N., Bottaro, S., Rimoldi, V., Gerussi, A., et al. (2021). MEDTEC students against coronavirus: Investigating the role of hemostatic genes in the predisposition to COVID-19 severity. JOURNAL OF PERSONALIZED MEDICINE, 11(11) [10.3390/jpm11111166].
File in questo prodotto:
File Dimensione Formato  
10281-395913_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 884.49 kB
Formato Adobe PDF
884.49 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/395913
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
Social impact