Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA LE MODIFICHE in fondo alla pagina
Bicocca Open Archive
The process e+e-→π+π-π0γ is studied at a center-of-mass energy near the D(4S) resonance using a data sample of 469 fb-1 collected with the BABAR detector at the PEP-II collider. We have performed a precise measurement of the e+e-→π+π-π0 cross section in the center-of-mass energy range from 0.62 to 3.5 GeV. In the energy regions of the ω and φ resonances, the cross section is measured with a systematic uncertainty of 1.3%. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured e+e-→π+π-π0 cross section from threshold to 2.0 GeV is (45.86±0.14±0.58)×10-10. From the fit to the measured 3π mass spectrum we have determined the resonance parameters Γ(ω→e+e-)B(ω→π+π-π0)=(0.5698±0.0031±0.0082) keV, Γ(φ→e+e-)B(φ→π+π-π0)=(0.1841±0.0021±0.0080) keV, and B(ρ→3π)=(0.88±0.23±0.30)×10-4. The significance of the ρ→3π signal is greater than 6σ. For the J/ψ resonance we have measured the product Γ(J/ψ→e+e-)B(J/ψ→3π)=(0.1248±0.0019±0.0026) keV.
Lees, J., Poireau, V., Tisserand, V., Grauges, E., Palano, A., Eigen, G., et al. (2021). Study of the process e+e- →π+π-π0 using initial state radiation with BABAR. PHYSICAL REVIEW D, 104(11) [10.1103/PhysRevD.104.112003].
Study of the process e+e- →π+π-π0 using initial state radiation with BABAR
Lees J. P.;Poireau V.;Tisserand V.;Grauges E.;Palano A.;Eigen G.;Brown D. N.;Kolomensky Yu. G.;Fritsch M.;Koch H.;Schroeder T.;Cheaib R.;Hearty C.;Mattison T. S.;McKenna J. A.;So R. Y.;Blinov V. E.;Buzykaev A. R.;Druzhinin V. P.;Golubev V. B.;Kozyrev E. A.;Kravchenko E. A.;Onuchin A. P.;Serednyakov S. I.;Skovpen Yu. I.;Solodov E. P.;Todyshev K. Yu.;Lankford A. J.;Dey B.;Gary J. W.;Long O.;Eisner A. M.;Lockman W. S.;Panduro Vazquez W.;Chao D. S.;Cheng C. H.;Echenard B.;Flood K. T.;Hitlin D. G.;Kim J.;Li Y.;Lin D. X.;Middleton S.;Miyashita T. S.;Ongmongkolkul P.;Oyang J.;Porter F. C.;Rohrken M.;Huard Z.;Meadows B. T.;Pushpawela B. G.;Sokoloff M. D.;Sun L.;Smith J. G.;Wagner S. R.;Bernard D.;Verderi M.;Bettoni D.;Bozzi C.;Calabrese R.;Cibinetto G.;Fioravanti E.;Garzia I.;Luppi E.;Santoro V.;Calcaterra A.;De Sangro R.;Finocchiaro G.;Martellotti S.;Patteri P.;Peruzzi I. M.;Piccolo M.;Rotondo M.;Zallo A.;Passaggio S.;Patrignani C.;Shuve B. J.;Lacker H. M.;Bhuyan B.;Mallik U.;Chen C.;Cochran J.;Prell S.;Gritsan A. V.;Arnaud N.;Davier M.;Le Diberder F.;Lutz A. M.;Wormser G.;Lange D. J.;Wright D. M.;Coleman J. P.;Gabathuler E.;Hutchcroft D. E.;Payne D. J.;Touramanis C.;Bevan A. J.;Di Lodovico F.;Sacco R.;Cowan G.;Banerjee S.;Brown D. N.;Davis C. L.;Denig A. G.;Gradl W.;Griessinger K.;Hafner A.;Schubert K. R.;Barlow R. J.;Lafferty G. D.;Cenci R.;Jawahery A.;Roberts D. A.;Cowan R.;Robertson S. H.;Seddon R. M.;Neri N.;Palombo F.;Cremaldi L.;Godang R.;Summers D. J.;Taras P.;De Nardo G.;Sciacca C.;Raven G.;Jessop C. P.;Losecco J. M.;Honscheid K.;Kass R.;Gaz A.;Margoni M.;Posocco M.;Simi G.;Simonetto F.;Stroili R.;Akar S.;Ben-Haim E.;Bomben M.;Bonneaud G. R.;Calderini G.;Chauveau J.;Marchiori G.;Ocariz J.;Biasini M.;Manoni E.;Rossi A.;Batignani G.;Bettarini S.;Carpinelli M.;Casarosa G.;Chrzaszcz M.;Forti F.;Giorgi M. A.;Lusiani A.;Oberhof B.;Paoloni E.;Rama M.;Rizzo G.;Walsh J. J.;Zani L.;Smith A. J. S.;Anulli F.;Faccini R.;Ferrarotto F.;Ferroni F.;Pilloni A.;Piredda G.;Bunger C.;Dittrich S.;Grunberg O.;Hess M.;Leddig T.;Voss C.;Waldi R.;Adye T.;Wilson F. F.;Emery S.;Vasseur G.;Aston D.;Cartaro C.;Convery M. R.;Dorfan J.;Dunwoodie W.;Ebert M.;Field R. C.;Fulsom B. G.;Graham M. T.;Hast C.;Innes W. R.;Kim P.;Leith D. W. G. S.;Luitz S.;MacFarlane D. B.;Muller D. R.;Neal H.;Ratcliff B. N.;Roodman A.;Sullivan M. K.;Va'vra J.;Wisniewski W. J.;Purohit M. V.;Wilson J. R.;Randle-Conde A.;Sekula S. J.;Ahmed H.;Tasneem N.;Bellis M.;Burchat P. R.;Puccio E. M. T.;Alam M. S.;Ernst J. A.;Gorodeisky R.;Guttman N.;Peimer D. R.;Soffer A.;Spanier S. M.;Ritchie J. L.;Schwitters R. F.;Izen J. M.;Lou X. C.;Bianchi F.;De Mori F.;Filippi A.;Gamba D.;Lanceri L.;Vitale L.;Martinez-Vidal F.;Oyanguren A.;Albert J.;Beaulieu A.;Bernlochner F. U.;King G. J.;Kowalewski R.;Lueck T.;Miller C.;Nugent I. M.;Roney J. M.;Sobie R. J.;Gershon T. J.;Harrison P. F.;Latham T. E.;Prepost R.;Wu S. L.
2021
Abstract
The process e+e-→π+π-π0γ is studied at a center-of-mass energy near the D(4S) resonance using a data sample of 469 fb-1 collected with the BABAR detector at the PEP-II collider. We have performed a precise measurement of the e+e-→π+π-π0 cross section in the center-of-mass energy range from 0.62 to 3.5 GeV. In the energy regions of the ω and φ resonances, the cross section is measured with a systematic uncertainty of 1.3%. The leading-order hadronic contribution to the muon magnetic anomaly calculated using the measured e+e-→π+π-π0 cross section from threshold to 2.0 GeV is (45.86±0.14±0.58)×10-10. From the fit to the measured 3π mass spectrum we have determined the resonance parameters Γ(ω→e+e-)B(ω→π+π-π0)=(0.5698±0.0031±0.0082) keV, Γ(φ→e+e-)B(φ→π+π-π0)=(0.1841±0.0021±0.0080) keV, and B(ρ→3π)=(0.88±0.23±0.30)×10-4. The significance of the ρ→3π signal is greater than 6σ. For the J/ψ resonance we have measured the product Γ(J/ψ→e+e-)B(J/ψ→3π)=(0.1248±0.0019±0.0026) keV.
Lees, J., Poireau, V., Tisserand, V., Grauges, E., Palano, A., Eigen, G., et al. (2021). Study of the process e+e- →π+π-π0 using initial state radiation with BABAR. PHYSICAL REVIEW D, 104(11) [10.1103/PhysRevD.104.112003].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/394324
Citazioni
19
15
Social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 598/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.