Many countries, including Italy, have experienced significant social and spatial inequalities in mortality during the Covid-19 pandemic. This study applies a multiple exposures framework to investigate how joint place-based factors influence spatial inequalities of excess mortality during the first year of the Covid −19 pandemic in the Lombardy region of Italy. For the Lombardy region, we integrated municipality-level data on all-cause mortality between 2015 and 2020 with 13 spatial covariates, including 5-year average concentrations of six air pollutants, the average temperature in 2020, and multiple socio-demographic factors, and health facilities per capita. Using the clustering algorithm Bayesian profile regression, we fit spatial covariates jointly to identify clusters of municipalities with similar exposure profiles and estimated associations between clusters and excess mortality in 2020. Cluster analysis resulted in 13 clusters. Controlling for spatial autocorrelation of excess mortality and health-protective agency, two clusters had significantly elevated excess mortality than the rest of Lombardy. Municipalities in these highest-risk clusters are in Bergamo, Brescia, and Cremona provinces. The highest risk cluster (C11) had the highest long-term particulate matter air pollution levels (PM2.5 and PM10) and significantly elevated NO2 and CO air pollutants, temperature, proportion ≤18 years, and male-to-female ratio. This cluster is significantly lower for income and ≥65 years. The other high-risk cluster, Cluster 10 (C10), is elevated significantly for ozone but significantly lower for other air pollutants. Covariates with elevated levels for C10 include proportion 65 years or older and a male-to-female ratio. Cluster 10 is significantly lower for income, temperature, per capita health facilities, ≤18 years, and population density. Our results suggest that joint built, natural, and socio-demographic factors influenced spatial inequalities of excess mortality in Lombardy in 2020. Studies must apply a multiple exposures framework to guide policy decisions addressing the complex and multi-dimensional nature of spatial inequalities of Covid-19-related mortality.

Coker, E., Molitor, J., Liverani, S., Martin, J., Maranzano, P., Pontarollo, N., et al. (2023). Bayesian profile regression to study the ecologic associations of correlated environmental exposures with excess mortality risk during the first year of the Covid-19 epidemic in lombardy, Italy. ENVIRONMENTAL RESEARCH, 216(Part 1 (1 January 2023)) [10.1016/j.envres.2022.114484].

Bayesian profile regression to study the ecologic associations of correlated environmental exposures with excess mortality risk during the first year of the Covid-19 epidemic in lombardy, Italy

Maranzano, Paolo
;
2023

Abstract

Many countries, including Italy, have experienced significant social and spatial inequalities in mortality during the Covid-19 pandemic. This study applies a multiple exposures framework to investigate how joint place-based factors influence spatial inequalities of excess mortality during the first year of the Covid −19 pandemic in the Lombardy region of Italy. For the Lombardy region, we integrated municipality-level data on all-cause mortality between 2015 and 2020 with 13 spatial covariates, including 5-year average concentrations of six air pollutants, the average temperature in 2020, and multiple socio-demographic factors, and health facilities per capita. Using the clustering algorithm Bayesian profile regression, we fit spatial covariates jointly to identify clusters of municipalities with similar exposure profiles and estimated associations between clusters and excess mortality in 2020. Cluster analysis resulted in 13 clusters. Controlling for spatial autocorrelation of excess mortality and health-protective agency, two clusters had significantly elevated excess mortality than the rest of Lombardy. Municipalities in these highest-risk clusters are in Bergamo, Brescia, and Cremona provinces. The highest risk cluster (C11) had the highest long-term particulate matter air pollution levels (PM2.5 and PM10) and significantly elevated NO2 and CO air pollutants, temperature, proportion ≤18 years, and male-to-female ratio. This cluster is significantly lower for income and ≥65 years. The other high-risk cluster, Cluster 10 (C10), is elevated significantly for ozone but significantly lower for other air pollutants. Covariates with elevated levels for C10 include proportion 65 years or older and a male-to-female ratio. Cluster 10 is significantly lower for income, temperature, per capita health facilities, ≤18 years, and population density. Our results suggest that joint built, natural, and socio-demographic factors influenced spatial inequalities of excess mortality in Lombardy in 2020. Studies must apply a multiple exposures framework to guide policy decisions addressing the complex and multi-dimensional nature of spatial inequalities of Covid-19-related mortality.
Articolo in rivista - Articolo scientifico
Air pollution; Covid-19; Inequalities; Mortality; Social determinants of health;
English
8-ott-2022
2023
216
Part 1 (1 January 2023)
114484
none
Coker, E., Molitor, J., Liverani, S., Martin, J., Maranzano, P., Pontarollo, N., et al. (2023). Bayesian profile regression to study the ecologic associations of correlated environmental exposures with excess mortality risk during the first year of the Covid-19 epidemic in lombardy, Italy. ENVIRONMENTAL RESEARCH, 216(Part 1 (1 January 2023)) [10.1016/j.envres.2022.114484].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/393768
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact