We complete the picture of sharp eigenvalue estimates for the p-Laplacian on a compact manifold by providing sharp estimates on the first nonzero eigenvalue of the nonlinear operator Δp when the Ricci curvature is bounded from below by a negative constant.We assume that the boundary of the manifold is convex, and put Neumann boundary conditions on it. The proof is based on a refined gradient comparison technique and a careful analysis of the underlying model spaces.

Naber, A., Valtorta, D. (2014). Sharp estimates on the first eigenvalue of the p-Laplacian with negative Ricci lower bound. MATHEMATISCHE ZEITSCHRIFT, 277(3-4), 867-891 [10.1007/s00209-014-1282-x].

Sharp estimates on the first eigenvalue of the p-Laplacian with negative Ricci lower bound

Valtorta, D
2014

Abstract

We complete the picture of sharp eigenvalue estimates for the p-Laplacian on a compact manifold by providing sharp estimates on the first nonzero eigenvalue of the nonlinear operator Δp when the Ricci curvature is bounded from below by a negative constant.We assume that the boundary of the manifold is convex, and put Neumann boundary conditions on it. The proof is based on a refined gradient comparison technique and a careful analysis of the underlying model spaces.
Articolo in rivista - Articolo scientifico
Eigenvalue estimates, p-Laplacian
English
2014
277
3-4
867
891
open
Naber, A., Valtorta, D. (2014). Sharp estimates on the first eigenvalue of the p-Laplacian with negative Ricci lower bound. MATHEMATISCHE ZEITSCHRIFT, 277(3-4), 867-891 [10.1007/s00209-014-1282-x].
File in questo prodotto:
File Dimensione Formato  
Naber-2014-Math Zeitschrift-preprint.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 210.9 kB
Formato Adobe PDF
210.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/393669
Citazioni
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 41
Social impact