For every field F which has a quadratic extension E we show there are non-metabelian infinite-dimensional thin graded Lie algebras all of whose homogeneous components, except the second one, have dimension 2. We construct such Lie algebras as F-subalgebras of Lie algebras M of maximal class over E. We characterise the thin Lie F-subalgebras of M generated in degree 1. Moreover, we show that every thin Lie algebra L whose ring of graded endomorphisms of degree zero of L3 is a quadratic extension of F can be obtained in this way. We also characterise the 2-generator F-subalgebras of a Lie algebra of maximal class over E which are ideally r-constrained for a positive integer r.

Avitabile, M., Caranti, A., Gavioli, N., Monti, V., Newman, M., O'Brien, E. (2023). Thin Subalgebras of Lie Algebras of Maximal Class. ISRAEL JOURNAL OF MATHEMATICS, 253(1), 101-112 [10.1007/s11856-022-2357-8].

Thin Subalgebras of Lie Algebras of Maximal Class

Avitabile, M
;
2023

Abstract

For every field F which has a quadratic extension E we show there are non-metabelian infinite-dimensional thin graded Lie algebras all of whose homogeneous components, except the second one, have dimension 2. We construct such Lie algebras as F-subalgebras of Lie algebras M of maximal class over E. We characterise the thin Lie F-subalgebras of M generated in degree 1. Moreover, we show that every thin Lie algebra L whose ring of graded endomorphisms of degree zero of L3 is a quadratic extension of F can be obtained in this way. We also characterise the 2-generator F-subalgebras of a Lie algebra of maximal class over E which are ideally r-constrained for a positive integer r.
Articolo in rivista - Articolo scientifico
Modular Lie algebra; graded Lie algebra; graded Lie algebra of maximal class; thin Lie algebra; ideally r-constrained algebra
English
4-ott-2022
2023
253
1
101
112
none
Avitabile, M., Caranti, A., Gavioli, N., Monti, V., Newman, M., O'Brien, E. (2023). Thin Subalgebras of Lie Algebras of Maximal Class. ISRAEL JOURNAL OF MATHEMATICS, 253(1), 101-112 [10.1007/s11856-022-2357-8].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/393442
Citazioni
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
Social impact