The paper deals with the gap function approach for equilibrium problems with locally Lipschitz data. The gap function inherits the locally Lipschitz continuity of the data. Hence, the connections between its generalized directional derivatives, monotonicity conditions on the equilibrium bifunction and descent properties, can be analyzed. In turn, this analysis leads to devise two descent methods. Finally, the results of preliminary numerical tests are reported.

Bigi, G., Pappalardo, M., Passacantando, M. (2016). Optimization Tools for Solving Equilibrium Problems with Nonsmooth Data. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 171(3), 887-905 [10.1007/s10957-016-0974-2].

Optimization Tools for Solving Equilibrium Problems with Nonsmooth Data

Passacantando, M
2016

Abstract

The paper deals with the gap function approach for equilibrium problems with locally Lipschitz data. The gap function inherits the locally Lipschitz continuity of the data. Hence, the connections between its generalized directional derivatives, monotonicity conditions on the equilibrium bifunction and descent properties, can be analyzed. In turn, this analysis leads to devise two descent methods. Finally, the results of preliminary numerical tests are reported.
Articolo in rivista - Articolo scientifico
Descent methods; Gap functions; Monotonicity; Nonsmooth equilibrium problem;
English
2016
171
3
887
905
partially_open
Bigi, G., Pappalardo, M., Passacantando, M. (2016). Optimization Tools for Solving Equilibrium Problems with Nonsmooth Data. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 171(3), 887-905 [10.1007/s10957-016-0974-2].
File in questo prodotto:
File Dimensione Formato  
Bigi-2016-J Optim Theory Appl-AAM.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 279.3 kB
Formato Adobe PDF
279.3 kB Adobe PDF Visualizza/Apri
Bigi-2016-J Optim Theory Appl-VoR.pdf

Solo gestori archivio

Descrizione: Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 501.09 kB
Formato Adobe PDF
501.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/392098
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
Social impact