The most advanced solutions that are currently adopted in ports and terminals use technologies based on radio frequency identification (RFID) and the Global Positioning System (GPS) to identify and localize shipping containers in the yard. Nevertheless, because of the limitations of these solutions, the position of containers is still affected by errors, and it cannot be determined in real time. In this paper, a nonconventional approach is presented: Each container is equipped with nodes that use wireless communication to detect neighbor containers and to send proximity information to a base station. At the base station, geometrical constraints and proximity data are combined to determine the positions of containers. Missing information due to faulty nodes is tolerated by modeling geometrical constraints as an integer linear programming problem. Numerical simulations show that most of the containers can be localized, even when the number of nodes that are affected by faults is on the order of 30%.

Abbate, S., Avvenuti, M., Corsini, P., Panicucci, B., Passacantando, M., Vecchio, A. (2012). An Integer Linear Programming Approach for Radio-Based Localization of Shipping Containers in the Presence of Incomplete Proximity Information. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 13(3), 1404-1419 [10.1109/TITS.2012.2188518].

An Integer Linear Programming Approach for Radio-Based Localization of Shipping Containers in the Presence of Incomplete Proximity Information

Passacantando, M;
2012

Abstract

The most advanced solutions that are currently adopted in ports and terminals use technologies based on radio frequency identification (RFID) and the Global Positioning System (GPS) to identify and localize shipping containers in the yard. Nevertheless, because of the limitations of these solutions, the position of containers is still affected by errors, and it cannot be determined in real time. In this paper, a nonconventional approach is presented: Each container is equipped with nodes that use wireless communication to detect neighbor containers and to send proximity information to a base station. At the base station, geometrical constraints and proximity data are combined to determine the positions of containers. Missing information due to faulty nodes is tolerated by modeling geometrical constraints as an integer linear programming problem. Numerical simulations show that most of the containers can be localized, even when the number of nodes that are affected by faults is on the order of 30%.
Articolo in rivista - Articolo scientifico
Container; Localization; Logistics; Wireless sensor networks (WSNs);
English
2012
13
3
1404
1419
6170896
partially_open
Abbate, S., Avvenuti, M., Corsini, P., Panicucci, B., Passacantando, M., Vecchio, A. (2012). An Integer Linear Programming Approach for Radio-Based Localization of Shipping Containers in the Presence of Incomplete Proximity Information. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 13(3), 1404-1419 [10.1109/TITS.2012.2188518].
File in questo prodotto:
File Dimensione Formato  
Abbate-2012-Trans Intelligent Trans Syst-AAM.pdf

accesso aperto

Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 432.99 kB
Formato Adobe PDF
432.99 kB Adobe PDF Visualizza/Apri
Abbate-2012-Trans Intelligent Trans Syst-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 876.45 kB
Formato Adobe PDF
876.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/391551
Citazioni
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
Social impact