Today, more and more enterprises are embarking on a digital transformation where most of their applications are hosted in the Cloud. As a result, a reliable Wide Area Network (WAN) has become a primary need to interconnect their distributed branch offices and data centers that accommodate those applications. Software-Defined Wide Area Network (SD-WAN) represents the most promising technology solution for next-generation enterprise networks, being able to increase network agility and reduce costs. In this paper, we present an experimental SD-WAN solution capable of running and optimizing delay-sensitive high-priority services, such as real-time video streaming, while minimizing downtime caused by network failures. This solution comprises a monitoring and a traffic engineering system for SD-WAN. The first consists of a Transport-layer Passive Monitoring (TPM) system based on extended Berkeley Packet Filter (eBPF) technology with the goal of monitoring TCP flows; the second consists of an application, running inside the SD-WAN controller, with the goal of orchestrating the network traffic in consideration of the monitoring measurements by ensuring rapid recovery and resilience in case of unexpected congestion events. We validate our solution over two SD-WAN testbeds: the first is hosted in our laboratory at Politecnico di Milano, while the second is deployed in a municipal network of an Italian city. Results show that our SD-WAN solution can increase the overall service availability while meeting the stringent QoS requirements of delay-sensitive services. IEEE

Troia, S., Mazzara, M., Savi, M., Zorello, L., Maier, G. (2022). Resilience of Delay-sensitive Services with Transport-layer Monitoring in SD-WAN. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 19(3), 2652-2663 [10.1109/TNSM.2022.3191943].

Resilience of Delay-sensitive Services with Transport-layer Monitoring in SD-WAN

Savi, M;
2022

Abstract

Today, more and more enterprises are embarking on a digital transformation where most of their applications are hosted in the Cloud. As a result, a reliable Wide Area Network (WAN) has become a primary need to interconnect their distributed branch offices and data centers that accommodate those applications. Software-Defined Wide Area Network (SD-WAN) represents the most promising technology solution for next-generation enterprise networks, being able to increase network agility and reduce costs. In this paper, we present an experimental SD-WAN solution capable of running and optimizing delay-sensitive high-priority services, such as real-time video streaming, while minimizing downtime caused by network failures. This solution comprises a monitoring and a traffic engineering system for SD-WAN. The first consists of a Transport-layer Passive Monitoring (TPM) system based on extended Berkeley Packet Filter (eBPF) technology with the goal of monitoring TCP flows; the second consists of an application, running inside the SD-WAN controller, with the goal of orchestrating the network traffic in consideration of the monitoring measurements by ensuring rapid recovery and resilience in case of unexpected congestion events. We validate our solution over two SD-WAN testbeds: the first is hosted in our laboratory at Politecnico di Milano, while the second is deployed in a municipal network of an Italian city. Results show that our SD-WAN solution can increase the overall service availability while meeting the stringent QoS requirements of delay-sensitive services. IEEE
Articolo in rivista - Articolo scientifico
Datacenter Networking; Delays; eBPF; Edge Networking; Emulation; Monitoring; Multiprotocol label switching; Network Monitoring; Real-time systems; Software Defined Networking (SDN); Software Defined Wide Area Network (SD-WAN); Streaming media; TCP; Traffic Engineering; Wide area networks;
English
2652
2663
12
Troia, S., Mazzara, M., Savi, M., Zorello, L., Maier, G. (2022). Resilience of Delay-sensitive Services with Transport-layer Monitoring in SD-WAN. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 19(3), 2652-2663 [10.1109/TNSM.2022.3191943].
Troia, S; Mazzara, M; Savi, M; Zorello, L; Maier, G
File in questo prodotto:
File Dimensione Formato  
TNSM_SD-WAN_Monitoring.pdf

accesso aperto

Descrizione: Article
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/389966
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
Social impact