We examine the problem of projecting subsets of a commutative, positively ordered monoid into an o-ideal. We prove that to this end one may restrict to a sufficient subset, for whose cardinality we provide an explicit upper bound. Several applications to set functions, vector lattices and other more explicit structures are provided.

Cassese, G. (2022). The projection problem in commutative, positively ordered monoids. SEMIGROUP FORUM, 105(2), 374-384 [10.1007/s00233-022-10308-z].

The projection problem in commutative, positively ordered monoids

Cassese, G
2022

Abstract

We examine the problem of projecting subsets of a commutative, positively ordered monoid into an o-ideal. We prove that to this end one may restrict to a sufficient subset, for whose cardinality we provide an explicit upper bound. Several applications to set functions, vector lattices and other more explicit structures are provided.
Articolo in rivista - Articolo scientifico
Ordered monoid; Prime o-ideal; Projection; Semilattice; κ-domain; κ-ideal;
English
2022
374
384
11
Cassese, G. (2022). The projection problem in commutative, positively ordered monoids. SEMIGROUP FORUM, 105(2), 374-384 [10.1007/s00233-022-10308-z].
File in questo prodotto:
File Dimensione Formato  
2022_SF.pdf

accesso aperto

Descrizione: Research Article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 265.52 kB
Formato Adobe PDF
265.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/389552
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact