We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statistics 39Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 ± 0.09) cm2/s for a selection of 140 keV electron recoil events in 200 V/cm drift field and 2.8 kV/cm extraction field. To study the systematics of our measurement we examine data sets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 ± 0.12) cm2/s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.

Agnes, P., Albuquerque, I., Alexander, T., Alton, A., Asner, D., Ave, M., et al. (2018). Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT, 904, 23-34 [10.1016/j.nima.2018.06.077].

Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC

Carpinelli, M.;
2018

Abstract

We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statistics 39Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 ± 0.09) cm2/s for a selection of 140 keV electron recoil events in 200 V/cm drift field and 2.8 kV/cm extraction field. To study the systematics of our measurement we examine data sets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 ± 0.12) cm2/s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.
Articolo in rivista - Articolo scientifico
Electron diffusion constant; Liquid argon; Time projection chamber;
English
23
34
12
Agnes, P., Albuquerque, I., Alexander, T., Alton, A., Asner, D., Ave, M., et al. (2018). Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH. SECTION A, ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT, 904, 23-34 [10.1016/j.nima.2018.06.077].
Agnes, P; Albuquerque, I; Alexander, T; Alton, A; Asner, D; Ave, M; Back, H; Baldin, B; Batignani, G; Biery, K; Bocci, V; Bonfini, G; Bonivento, W; Bossa, M; Bottino, B; Budano, F; Bussino, S; Cadeddu, M; Cadoni, M; Calaprice, F; Caminata, A; Canci, N; Candela, A; Caravati, M; Cariello, M; Carlini, M; Carpinelli, M; Catalanotti, S; Cataudella, V; Cavalcante, P; Cavuoti, S; Chepurnov, A; Cicalò, C; Cocco, A; Covone, G; D'Angelo, D; D'Incecco, M; D'Urso, D; Davini, S; De Candia, A; De Cecco, S; De Deo, M; De Filippis, G; De Rosa, G; De Vincenzi, M; Demontis, P; Derbin, A; Devoto, A; Di Eusanio, F; Di Pietro, G; Dionisi, C; Edkins, E; Fan, A; Fiorillo, G; Fomenko, K; Franco, D; Gabriele, F; Gabrieli, A; Galbiati, C; Ghiano, C; Giagu, S; Giganti, C; Giovanetti, G; Goretti, A; Granato, F; Gromov, M; Guan, M; Guardincerri, Y; Gulino, M; Hackett, B; Herner, K; Hughes, D; Humble, P; Hungerford, E; Ianni, A; James, I; Johnson, T; Keeter, K; Kendziora, C; Kochanek, I; Koh, G; Korablev, D; Korga, G; Kubankin, A; Kuss, M; Li, X; Lissia, M; Loer, B; Longo, G; Ma, Y; Machado, A; Machulin, I; Mandarano, A; Mari, S; Maricic, J; Martoff, C; Messina, A; Meyers, P; Milincic, R; Monte, A; Morrocchi, M; Mount, B; Muratova, V; Musico, P; Navrer Agasson, A; Nozdrina, A; Oleinik, A; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pandola, L; Pantic, E; Paoloni, E; Pazzona, F; Pelczar, K; Pelliccia, N; Pocar, A; Pordes, S; Qian, H; Razeti, M; Razeto, A; Reinhold, B; Renshaw, A; Rescigno, M; Riffard, Q; Romani, A; Rossi, B; Rossi, N; Sablone, D; Samoylov, O; Sands, W; Sanfilippo, S; Sant, M; Savarese, C; Schlitzer, B; Segreto, E; Semenov, D; Sheshukov, A; Singh, P; Skorokhvatov, M; Smirnov, O; Sotnikov, A; Stanford, C; Suffritti, G; Suvorov, Y; Tartaglia, R; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E; Verducci, M; Vishneva, A; Vogelaar, B; Wada, M; Waldrop, T; Walker, S; Wang, H; Wang, Y; Watson, A; Westerdale, S; Wojcik, M; Xiang, X; Xiao, X; Yang, C; Ye, Z; Zhu, C; Zuzel, G
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/389127
Citazioni
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
Social impact