We derive local asymptotics of solutions to second order elliptic equations at the edge of a (N−1)-dimensional crack, with homogeneous Neumann boundary conditions prescribed on both sides of the crack. A combination of blow-up analysis and monotonicity arguments provides a classification of all possible asymptotic homogeneities of solutions at the crack's tip, together with a strong unique continuation principle.

Felli, V., Siclari, G. (2022). Unique continuation from a crack's tip under Neumann boundary conditions. NONLINEAR ANALYSIS, 222(September 2022) [10.1016/j.na.2022.113002].

Unique continuation from a crack's tip under Neumann boundary conditions

Felli V.
;
Siclari G.
2022

Abstract

We derive local asymptotics of solutions to second order elliptic equations at the edge of a (N−1)-dimensional crack, with homogeneous Neumann boundary conditions prescribed on both sides of the crack. A combination of blow-up analysis and monotonicity arguments provides a classification of all possible asymptotic homogeneities of solutions at the crack's tip, together with a strong unique continuation principle.
Articolo in rivista - Articolo scientifico
Blow-up analysis; Crack singularities; Monotonicity formula; Unique continuation;
English
4-giu-2022
2022
222
September 2022
113002
partially_open
Felli, V., Siclari, G. (2022). Unique continuation from a crack's tip under Neumann boundary conditions. NONLINEAR ANALYSIS, 222(September 2022) [10.1016/j.na.2022.113002].
File in questo prodotto:
File Dimensione Formato  
revisionNONLINEAR-ANALYSIS.pdf

Accesso Aperto

Descrizione: Research Article
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Dominio pubblico
Dimensione 309.94 kB
Formato Adobe PDF
309.94 kB Adobe PDF Visualizza/Apri
Felli-2022-NonlinearAnalysis-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 889.24 kB
Formato Adobe PDF
889.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Felli-2022-NonlinearAnalysis-preprint.pdf

accesso aperto

Descrizione: preprint
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Dominio pubblico
Dimensione 746.06 kB
Formato Adobe PDF
746.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/388545
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact