We study the almost Kähler geometry of adjoint orbits of non-compact real semisimple Lie groups endowed with the Kirillov–Kostant–Souriau symplectic form and a canonically defined almost-complex structure. We give explicit formulas for the Chern–Ricci form, the Hermitian scalar curvature and the Nijenhuis tensor in terms of root data. We also discuss when the Chern–Ricci form is a multiple of the symplectic form, and when compact quotients of these orbits are of Kähler type.
Della Vedova, A., Gatti, A. (2022). Almost Kähler geometry of adjoint orbits of semisimple Lie groups. MATHEMATISCHE ZEITSCHRIFT, 301(3), 3141-3183 [10.1007/s00209-022-02995-9].
Almost Kähler geometry of adjoint orbits of semisimple Lie groups
Della Vedova, A;
2022
Abstract
We study the almost Kähler geometry of adjoint orbits of non-compact real semisimple Lie groups endowed with the Kirillov–Kostant–Souriau symplectic form and a canonically defined almost-complex structure. We give explicit formulas for the Chern–Ricci form, the Hermitian scalar curvature and the Nijenhuis tensor in terms of root data. We also discuss when the Chern–Ricci form is a multiple of the symplectic form, and when compact quotients of these orbits are of Kähler type.File | Dimensione | Formato | |
---|---|---|---|
Della Vedova-2022-Math Zeitschrift-VoR.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Tutti i diritti riservati
Dimensione
505.33 kB
Formato
Adobe PDF
|
505.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.