Landslide magnitude-frequency (LMF) and yield-area relations are examined for evaluating landslide-driven sediment dynamics in the Tsitika and Eve Rivers (612 km{2}), British Columbia. Research methods couple field work and air photo interpretation (API) in a GIS environment. API covers a seventy year time window. Results show that the long history of glacial erosion and the more recent forest management affect contemporary landslide activity in many respects. First, the nature and distribution of Quaternary-derived surficial deposits confounds primary lithologic effects; therefore, topographies underlain by less resistant geology are not typically associated with higher rates of landsliding. Second, the stratifications of LMF by landslide and terrain attributes have allowed detecting for the first time characteristic landslide length scales dependent on (i) movement style (i.e., slide, avalanche, and flow); (ii) type of material mobilized (i.e., bedrock and debris); and (iii) land use (i.e., forest clearing). As a conclusion, landscape bio-morphometric controls override the theoretical self-organized criticality of LMF relations. Third, slope-area analysis of landslide initiation and deposition zones reveals that bedrock landslides dominate the landscape on mountain summits and ridges; these processes deliver material to colluvial channels, in which debris is temporarily stored until remobilization occurs via full-scale debris flows. In undisturbed forest, during the seventy years examined, colluvial activity across geomorphic process domains (seen as sediment reservoirs) has generated net volume accumulation in unchannelled valleys, sink colluvial, and fluvially-dominated channels; in contrast, planar slopes and gullies have been degrading. Logging operations have accentuated aggradation in gullies and in unchannelled topographies. Finally, the area-based scaling relation of landslide sediment yield appears to match the spatial organization of geomorphic process domains. In this context, the contemporary, specific fluvial sediment yield (suspended) of British Columbia exceeds the specific landslide yield for drainage areas comprised between 5 and 50 km{2}. Cumulative daily yield indicates that colluvial sediment redistribution across landscape scales is limited to relatively small drainage areas; specifically, 90% of the colluvial load is injected within contributing area of about 0.6 km{2}.

Brardinoni, F. (2006). Effects of Landscape History and Forest Management on Landslide-Driven Sediment Dynamics in Mountain Drainage Basins of Coastal British Columbia. In EOS Transactions (pp.T11A-0427).

Effects of Landscape History and Forest Management on Landslide-Driven Sediment Dynamics in Mountain Drainage Basins of Coastal British Columbia

BRARDINONI, FRANCESCO
2006

Abstract

Landslide magnitude-frequency (LMF) and yield-area relations are examined for evaluating landslide-driven sediment dynamics in the Tsitika and Eve Rivers (612 km{2}), British Columbia. Research methods couple field work and air photo interpretation (API) in a GIS environment. API covers a seventy year time window. Results show that the long history of glacial erosion and the more recent forest management affect contemporary landslide activity in many respects. First, the nature and distribution of Quaternary-derived surficial deposits confounds primary lithologic effects; therefore, topographies underlain by less resistant geology are not typically associated with higher rates of landsliding. Second, the stratifications of LMF by landslide and terrain attributes have allowed detecting for the first time characteristic landslide length scales dependent on (i) movement style (i.e., slide, avalanche, and flow); (ii) type of material mobilized (i.e., bedrock and debris); and (iii) land use (i.e., forest clearing). As a conclusion, landscape bio-morphometric controls override the theoretical self-organized criticality of LMF relations. Third, slope-area analysis of landslide initiation and deposition zones reveals that bedrock landslides dominate the landscape on mountain summits and ridges; these processes deliver material to colluvial channels, in which debris is temporarily stored until remobilization occurs via full-scale debris flows. In undisturbed forest, during the seventy years examined, colluvial activity across geomorphic process domains (seen as sediment reservoirs) has generated net volume accumulation in unchannelled valleys, sink colluvial, and fluvially-dominated channels; in contrast, planar slopes and gullies have been degrading. Logging operations have accentuated aggradation in gullies and in unchannelled topographies. Finally, the area-based scaling relation of landslide sediment yield appears to match the spatial organization of geomorphic process domains. In this context, the contemporary, specific fluvial sediment yield (suspended) of British Columbia exceeds the specific landslide yield for drainage areas comprised between 5 and 50 km{2}. Cumulative daily yield indicates that colluvial sediment redistribution across landscape scales is limited to relatively small drainage areas; specifically, 90% of the colluvial load is injected within contributing area of about 0.6 km{2}.
abstract + poster
Geomorphology and weathering, Debris flows and landslides, Geographic Information Systems, Human impacts, Self-organized criticality
English
American Geophysical Union Fall Meeting
2006
EOS Transactions
2006
87
52
T11A-0427
none
Brardinoni, F. (2006). Effects of Landscape History and Forest Management on Landslide-Driven Sediment Dynamics in Mountain Drainage Basins of Coastal British Columbia. In EOS Transactions (pp.T11A-0427).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/38255
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact