In a renowned paper, Lee and Neves proved a Penrose inequality for spacetimes with negative cosmological constant and nonpositive mass aspect. As an application, they were able to obtain a static uniqueness theorem for Kottler spacetimes with nonpositive mass. In this paper, we propose an alternative more elementary proof of this static uniqueness result and we discuss some possible generalizations, most notably to degenerate horizons.

Borghini, S. (2022). Static Black Hole Uniqueness for nonpositive masses. NONLINEAR ANALYSIS, 220(July 2022) [10.1016/j.na.2022.112843].

Static Black Hole Uniqueness for nonpositive masses

Borghini S.
Primo
2022

Abstract

In a renowned paper, Lee and Neves proved a Penrose inequality for spacetimes with negative cosmological constant and nonpositive mass aspect. As an application, they were able to obtain a static uniqueness theorem for Kottler spacetimes with nonpositive mass. In this paper, we propose an alternative more elementary proof of this static uniqueness result and we discuss some possible generalizations, most notably to degenerate horizons.
Articolo in rivista - Articolo scientifico
Black Hole Uniqueness Theorem; Kottler solution; Static metrics;
English
7-mar-2022
2022
220
July 2022
112843
partially_open
Borghini, S. (2022). Static Black Hole Uniqueness for nonpositive masses. NONLINEAR ANALYSIS, 220(July 2022) [10.1016/j.na.2022.112843].
File in questo prodotto:
File Dimensione Formato  
Borghini-2022-Nonlinear Anal-preprint.pdf

accesso aperto

Descrizione: Articolo
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Altro
Dimensione 368.4 kB
Formato Adobe PDF
368.4 kB Adobe PDF Visualizza/Apri
Borghini-2022-Nonlinear Anal-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 755.4 kB
Formato Adobe PDF
755.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/379808
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
Social impact