Intermediate-mass black holes (IMBHs) span the approximate mass range 100-105 M· , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150 M· providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M· and effective aligned spin 0.8 at 0.056 Gpc-3 yr-1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc-3 yr-1.

Abbott, R., Abbott, T., Acernese, F., Ackley, K., Adams, C., Adhikari, N., et al. (2022). Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. ASTRONOMY & ASTROPHYSICS, 659(1 March 2022) [10.1051/0004-6361/202141452].

Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

Buscicchio R.;Carpinelli M.;Colombo A.;Colpi M.;Giacomazzo B.;Renzini A.;Rozza D.;Salafia O. S.;
2022

Abstract

Intermediate-mass black holes (IMBHs) span the approximate mass range 100-105 M· , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150 M· providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M· and effective aligned spin 0.8 at 0.056 Gpc-3 yr-1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc-3 yr-1.
Articolo in rivista - Articolo scientifico
Black hole physics; Gravitational waves; Stars: black holes;
English
2022
659
1 March 2022
A84
open
Abbott, R., Abbott, T., Acernese, F., Ackley, K., Adams, C., Adhikari, N., et al. (2022). Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. ASTRONOMY & ASTROPHYSICS, 659(1 March 2022) [10.1051/0004-6361/202141452].
File in questo prodotto:
File Dimensione Formato  
aa41452-21.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 3.99 MB
Formato Adobe PDF
3.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/375448
Citazioni
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 26
Social impact