A group G admits an n-partite digraphical representation if there exists a regular n-partite digraph Γ such that the automorphism group Aut(Γ) of Γ satisfies the following properties: (1) Aut(Γ) is isomorphic to G, (2) Aut(Γ) acts semiregularly on the vertices of Γ and (3) the orbits of Aut(Γ) on the vertex set of Γ form a partition into n parts giving a structure of n-partite digraph to Γ. In this paper, for every positive integer n, we classify the finite groups admitting an n-partite digraphical representation.

Du, J., Feng, Y., Spiga, P. (2022). On n-partite digraphical representations of finite groups. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 189(July 2022) [10.1016/j.jcta.2022.105606].

On n-partite digraphical representations of finite groups

Spiga P.
2022

Abstract

A group G admits an n-partite digraphical representation if there exists a regular n-partite digraph Γ such that the automorphism group Aut(Γ) of Γ satisfies the following properties: (1) Aut(Γ) is isomorphic to G, (2) Aut(Γ) acts semiregularly on the vertices of Γ and (3) the orbits of Aut(Γ) on the vertex set of Γ form a partition into n parts giving a structure of n-partite digraph to Γ. In this paper, for every positive integer n, we classify the finite groups admitting an n-partite digraphical representation.
Articolo in rivista - Articolo scientifico
DnSR; DRR; n-PDR; Regular representation; Semiregular group;
English
23-feb-2022
2022
189
July 2022
105606
none
Du, J., Feng, Y., Spiga, P. (2022). On n-partite digraphical representations of finite groups. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 189(July 2022) [10.1016/j.jcta.2022.105606].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/375391
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
Social impact