We investigate the asymptotic behavior of the nodal lines for random spherical harmonics restricted to shrinking domains, in the 2-dimensional case: for example, the length of the zero set Zℓ,rℓ:= ZBrℓ (Tℓ) = len({x ∈ S2 ∩ Brℓ: Tℓ(x) = 0}), where Brℓ is the spherical cap of radius rℓ. We show that the variance of the nodal length is logarithmic in the high energy limit; moreover, it is asymptotically fully equivalent, in the L2-sense, to the "local sample trispectrum", namely, the integral on the ball of the fourth-order Hermite polynomial. This result extends and generalizes some recent findings for the full spherical case. As a consequence a Central Limit Theorem is established.
Todino, A. (2020). Nodal lengths in shrinking domains for random eigenfunctions on S2. BERNOULLI, 26(4), 3081-3110 [10.3150/20-BEJ1216].
Nodal lengths in shrinking domains for random eigenfunctions on S2
Todino, AP
2020
Abstract
We investigate the asymptotic behavior of the nodal lines for random spherical harmonics restricted to shrinking domains, in the 2-dimensional case: for example, the length of the zero set Zℓ,rℓ:= ZBrℓ (Tℓ) = len({x ∈ S2 ∩ Brℓ: Tℓ(x) = 0}), where Brℓ is the spherical cap of radius rℓ. We show that the variance of the nodal length is logarithmic in the high energy limit; moreover, it is asymptotically fully equivalent, in the L2-sense, to the "local sample trispectrum", namely, the integral on the ball of the fourth-order Hermite polynomial. This result extends and generalizes some recent findings for the full spherical case. As a consequence a Central Limit Theorem is established.File | Dimensione | Formato | |
---|---|---|---|
BEJ1216.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
286.09 kB
Formato
Adobe PDF
|
286.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.