On a fibred algebraic variety, is defined a relative invariant called slope which classifies the variety itself. For these fibration a main character is played by the Hodge bundle and by the geometric invariants of the general fibers. In particular in this thesis we focus on surfaces and threefolds fibred over curves, and we give a lower bound for the slope which depends on the unitary rank of the hodge bundle and on: -the clifford index of the general curve, in case of fibred surfaces; - the geometric genus ($p_{g}$) of the general surface, in case of threefolds. Finally we use these results on fibred threefolds to make a new upper bound for the unitary rank $u_{f}$ depending on $p_{g}$ under the hypothesis that the genus of the base curve is zero or one.

Su una varieta algebrica fibrata si definesce un invariante relativo detto slope che ne specifica la natura. Per queste fibrazioni un ruolo importante è svolto del fibrato di Hodge e dagli invarianti geometrici delle fibre generiche. In particulare in questa tesi ci concentreremo su superfici e threefold fibrati su curve, dando un stima dal basso della slope che dipenda del rango unitario del fibrato di hodge e da: - indice di clifford cella curva generale, nel caso di superfici; -dal genere geometrico ($p_{g}$) della superficie generale nel caso di threefold. infine sfrutteremo i risultati ottenuti sui threefold per definere un upper bound del rango unitario $u_{f}$ in funzione di $p_{g}$ sotto l'ipotesi che il genere della curva base sia zero o uno.

(2022). Slope inequalities for fibred surfaces and fibreed threefolds. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).

Slope inequalities for fibred surfaces and fibreed threefolds

RIVA, ENEA
2022

Abstract

On a fibred algebraic variety, is defined a relative invariant called slope which classifies the variety itself. For these fibration a main character is played by the Hodge bundle and by the geometric invariants of the general fibers. In particular in this thesis we focus on surfaces and threefolds fibred over curves, and we give a lower bound for the slope which depends on the unitary rank of the hodge bundle and on: -the clifford index of the general curve, in case of fibred surfaces; - the geometric genus ($p_{g}$) of the general surface, in case of threefolds. Finally we use these results on fibred threefolds to make a new upper bound for the unitary rank $u_{f}$ depending on $p_{g}$ under the hypothesis that the genus of the base curve is zero or one.
STOPPINO, LIDIA
slope inequality; unitary rank; hodge bundle; fibred surface; fibred threefold
slope inequality; unitary rank; hodge bundle; fibred surface; fibred threefold
MAT/03 - GEOMETRIA
English
27-apr-2022
MATEMATICA
34
2020/2021
open
(2022). Slope inequalities for fibred surfaces and fibreed threefolds. (Tesi di dottorato, Università degli Studi di Milano-Bicocca, 2022).
File in questo prodotto:
File Dimensione Formato  
phd_unimib_841667.pdf

accesso aperto

Descrizione: Tesi di Riva Enea - 841667
Tipologia di allegato: Doctoral thesis
Dimensione 617.5 kB
Formato Adobe PDF
617.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/374266
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
Social impact