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0.1. Introduction

We call a fibred variety an complex projective algebraic variety X of di-

mension n with a surjective map f : X → B with connected fibres, over a

smooth projective curve B. In this setting we define the relative canonical sheaf

ωf := ωX ⊗ (f ∗ωB)∨ where ωY is the dualizing sheaf of the variety Y , and call

Kf an associated divisor. A slope inequality is an inequality of the form:

(0.1.1) Kn
f ≥ A deg f∗ωf ,

where A is a positive number, ideally depending on the geometry of the fibra-

tion and f∗ωf . The rank h0(F, ωF ) vector bundle is called the Hodge bundle of

f . This inequality 0.1.1 is particular meaningful in case Kf has some positivity

property, say for instance Kf is relatively ample, or nef.

In the surface case (n = 2), we have that

deg f∗ωf = χf = χ(OX)− χ(OF )χ(OB)

(see 2.2.1). The general fibres F are smooth curves of genus say g.

The first slope inequality was proved independently by Xiao and Cornalba-

Harris ([59],[21]) and it is the following:

Let f : S → B be a non-isotrivial fibred surface, over a smooth base curve B

of genus g(B) := b. Called g the genus of the general smooth fibre F . Suppose

that g ≥ 2 then holds the inequality:

K2
f ≥

4(g − 1)

g
deg f∗ωf .

So, in this case A is an increasing function of the genus of the general fibres.

The slope inequality is sharp: it is reached by certain hyperelliptic fibration.

After the seminal papers of Xiao and Cornalba-Harris, many authors among all

we have to cite Konno [38] [39] [40] have studied the problem of finding other

slope inequalities for fibred surfaces, proving the influence of other invariants of

the fibration.

In particular, in view of the result mentionted above, it is normal to ex-

pect a better bound increasing with the gonality of the fibres. There have been

contributions in this direction due to Barja-Stoppino [11] (for trigonal fibres),

Zucconi-Beorchia [15] (for 4-gonal fibres) and Cornalba-Stoppino [22] (for dou-

ble covers). Also the Clifford index of the general fibres has proved to have an

effect on the slope ([40]). On the other hand, another invariant has an influence

on the slope: the relative irregularity of the fibration

qf := q(S)− q(B) = q(S)− b.
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Indeed it is proved alredy in Xiao’s paper [59] that if qf > 1 then the better

bound

K2
f ≥ 4χf

holds.

This invariant is also related to the Hodge bundle f∗ωf . Let us recall that the

Hodge bundle satisfies two decompositions called Fujita’s decompositions [30],

[31]:

f∗ωf = E ⊕ O⊕qfB first Fujita’s decomposition;(0.1.2)

f∗ωf = A⊕ U second Fujita’s decomposition;(0.1.3)

whereA is an ample vector bundle, U an unitary flat bundle of rank uf := rkU
and E is nef and satisfies H1(B, E) = 0. Comparing the first and second Fujita’s

decomposition, since U is a flat bundle, we see that:

U ⊇ OqfB ,

and so uf ≥ qf .

The first slope inequality which involved the relative irregularity qf , is due to

Barja-Stoppino [10]:

(0.1.4) K2
f ≥ 4

g − 1

g − bm/2c
deg f∗ωf

where m := min{qf , cf} and cf is the maximun clifford index amoung the smoth

fiber of f (see Section 2.2.3). This last inequality was latter improved by the

result of Lu and Zuo [41]:

(0.1.5) K2
f ≥ 4

g − 1

g − qf/2
deg f∗ωf .

The main results of this thesis are some new slope inequalities for fibred

surfaces. In particular we obtain:

• a new bound increasing with min{qf , cf} sharper than (0.1.4) and in

some cases better than the one of (0.1.5);

• a bound increasing with min{cf , uf} which is completely new.

In particular the results can be summarized as follows:

Theorem (Theorems 2.7 and 2.8). Let f : S → B be a relatively minimal

fibred surface of genus g ≥ 2; let m := min{qf , cf}. The following inequalities

hold:

(0.1.6) K2
f ≥ 2

2g − 2−m
g −m

χf ,
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(0.1.7) K2
f ≥

{
2

(2g−2−uf )

(g−uf )
χf if uf ≤ cf ;

2
(2g−2−cf )(g−1−uf )

(g−1−cf )(g−uf )
χf if uf ≥ cf .

Remark 0.1.8. Note that all our bounds are asymptotically close to 4 for

g � 0, and this is natural in view of all the known examples and conjectures.

But when m is big with respect to g, the slope gets bigger, going asymptotically to

6. Let us observe that for odd genus, if the Clifford index is maximal cf = bg−1
2
c

and if qf ≥ g−1
2

(0.1.6) becomes Konno’s bound ([40], thm 4.1). For Clifford

index (hence gonality) close to g−1
2

, yet not maximal, these bounds are new.

Our arguments make use of Xiao’s method (Section 2.2.4). Basically, the idea

of Xiao’s tecnique can be described as follows: given a subsheaf of the Hodge

bundle G ⊆ f∗ωf , consider the linear sub-canonical system G⊗C(t) ⊆ H0(F,KF )

induced on a general fibre F = f−1(t). If one has a lower estimate on the

ratio of degree over projective dimension of the linear subsystems of G ⊗ C(t),

then the method produces an inequality of the form K2
f ≥ b deg(G), where b

is a positive number depending on the lower estimate above. See Section 2.2.4

and Theorem 2.5 for precise statements. Taking as G the whole Hodge bundle,

Clifford’s Theorem says that for any subsystem |V | ⊆ |G ⊗ C(t)| = |KFt|, the

degree over dimension of |V | is greater or equal to 2.

This info implemented in the Xiao’s machinary gives the slope inequality

2.2.15 [59].

It is thus very natural to try and apply Xiao’s method to the ample summand

A of the second Fujita decomposition of the Hodge bundle (2.2), as degA = χf .

In [12], [10] the analog approach is discussed with the positive summand of the

first Fujita decomposition (2.2.8). One of the difficulties with these approaches

is that there seems to be no control on the base locus of the linear sub-canonical

systems induced by A on the general fibre of f , neither on the linear stability

(ref. Section 1.1) of this system.

However, one can still look to a lower bound for the ratio of degree over

projective dimension of the linear subcanonical systems that improves Clifford’s

bound 2.

This is what it is done in this thesis, obtaining a new Clifford-type inequality

for subcanonical systems over a non-hyperelliptic curve C, only depending on the

codimension and on the Clifford index of C. This gives also the desired control

on the base locus of the subcanonical systems.

Theorem (Theorem 1.5). Let C ⊆ Pg−1 be a canonical non-hyperelliptic

curve. Let V ⊆ H0(C, ωC) be a linear subspace of codimension k ≤ g − 2. Then



0.1. INTRODUCTION v

for any W ⊆ V subspace of dimension dimW ≥ 2, we have:

deg |W |
dim |W |

≥ 2g − 2−m
g −m− 1

,

where m := min{k,Cliff(C)}.

Although the motivation is to apply Xiao’s technique, we believe that this

result is interesting on its own. The arguments are of genuine classical flavour.

The above result implies a stability result, as follows (see Section 1.1 for the

definitions).

Corollary 0.1.9 (Corollary 1.5.3). Given V ⊆ H0(C, ωC) a vector subspace

of codimension k and dimension≥ 2, with k ≤ Cliff(C). Then deg |V | ≥ 2g−2−k,

i.e. the base locus of |V | has degree smaller or equal to k. If deg |V | = 2g−2−k,

then |V | is linearly semistable and in particular it is Chow semistable.

Remark 0.1.10. This result should be compared also to [46], where linear

stability of linear systems on curves is discussed in relation to the Clifford index.

Remark 0.1.11. The slope inequalities have applications both to the geog-

raphy of surfaces of general type (see for instance [52]) and to the ample cone of

the moduli space of curves (see for instance [47] and [32]). These perspectives

were the original point of view of Xiao and of Cornalba and Harris respectively.

We also find an example of a fibred surface where the inequality (0.1.6) is

strictly greater than (0.1.7), following a construction due to Catanese and Det-

tweiler [16]. This fibration is a family of semistable curves and its general fibres

are cyclic covers over P1 ramified over four points .The computation of uf is

obtained through a study of the Hodge bundle monodromy (see Chapter 3). In

particular we find the invariants of the fibrations have the following values: g = 6,

cf = 2, uf = 2 and qf = 0. It would be interesting to obtain via the same method

other examples with both g and uf high, but this task doesn’t seem to be easily

obtained.

In the last part of the thesis we address the problem of slope inequalities for

fibred threefolds.

In the last years, many authors have treated the case of slope inequalities of

fibrations over curves with total space of higher dimension (see for instance [8]).

First of all let us recall that the Fujita’s decompositions cited above (0.1.2,)

hold for any fibration, as long as the base locus is a curve.

We focus on understanding the influence of uf for the case of fibred threefolds.

The main result cam be stated as follows
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Theorem (Theorem 4.2). Let f : Σ→ B be a fibred threefold, f∗ωf = A⊕U
its Hodge bundle, and suppose that A is semistable. Then there exists a set of

slope inequalities which depends on uf and pg, of the form

λf ≥ A+
Buf + C

pg − uf

where A,B are positive constants and C depends of the ”embedding properties”

of A.

Comparing this inequalities with a result of Ohno [51], we give also:

Theorem (Theorem 4.3.2). Let f : Σ → B be a fibred threefold as above.

Then if the genus of the base is zero or one, there exist a set of upper bounds for

uf of the form:

uf ≤ Apg +B

where A is a positive constant, and B depends of the ”embedding properties” of

A.

This is a first upper bound for the unitary rank which depends on pg.

This thesis is organized as follows. In Chapter 1, after some preliminaries on

canonical curves and linear stability, we prove the main Clifford-type result for

non-complete sub-canonical systems on non-hyperelliptic curves. We then discuss

some consequences and give some natural examples.

In Chapter 2 we start by reviewing in Section 2.1 some basic results on fibred

surfaces and their relative invariants. Then in Section 2.2.4 and Section 2.2.5

we give a review of the main theorems of Xiao’s technique, in the form needed

for our arguments. We state Xiao’s method for fibred surfaces in full generality,

following Konno’s and Barja’s papers, for any locally free subsheaf G of f∗OS(D),

where D is a nef divisor on S.

The proof of the main inequalities is carried on in Section 2.3.

In Chapter 3, following Catanese and Dettweiler’s examples, we provide a

first example of a fibred surface such that the inequality in the main theorem

involving uf is new.

In the last Chapter 4 we recall some basic definition of fibred threefold and

state the Xiao–Konno–Ohno formula for fibred threefold, which extend the Xiao’s

tecnique. Using this latter we derived new slope inequality for threefold under the

hypothesis of semistability of the ample summand of the Hodge bundle. Finally

using a result of Ohno, we are eventually able to rephrase our slope inequalities



0.1. INTRODUCTION vii

as upper buonds for the unitary rank uf in term of pg if the genus of the base b

is zero or one.

Assuptions and Notations. We work over C. All varieties, unless other-

wise stated, are assumed to be smooth and projective. Given a variety X and a

divisor D on X, H0(X,D) means as usual H0(X,OX(D)), |D| its linear system

and dim |D| = h0(X,D)− 1 its projective dimension.



CHAPTER 1

Curves

1.1. Dualizing sheaf and canonical morphism

Let C be a smooth curve. Over C is naturally defined a sheaf of holomorphic

1-forms ωC called the canonical sheaf. It is involved in the Serre duality:

H0(C,O(D)) ' H1(C, ωC(−D))∨,

where D is any divisor of C. For this last property ωC is called dualizing sheaf.

Since it is particularly useful for calculating cohomological dimensions we want

to define a dualizing sheaf even over a singular curve.

Now let C be a reduced and not necessarily irreducible curve, we follow ([13]

chapter II sec 6) to define the dualizing sheaf of C. If ν : Ĉ → C is the normaliza-

tion of C, then Ĉ is a disjoint union of (non-singular) curves. For x ∈ C singular,

ν−l(x) consists of finitely many points corresponding to the different branches of

C through x. On C there is the normalization sequence:

0→ ν∗OC → OĈ → Z → 0

where Z is a skyscraper sheaf supported at the singular points p1, ..., pk of C.

Now we consider the sections ψ of ωĈ such that:

• over every set of points q1, ..., qk inverse images of a singular point of C,

ψ has at most k − 1 poles counted with multiplicity;

• the sum of the residues of ψ over q1, ..., qk is zero.

The OC-module given by the pushforward of these sections is the dualizing

sheaf ω̂C of C. This sheaf has the following properties:

• if C is smooth ω̂C = ωC ;

• the dualizing sheaf satisfies the Serre’s properties, hence for every divisor

D of C:

H1(C,O(D)) w H0(C, ω̂C ⊗O(−D))∨;

• ω̂C has degree deg(ω̂C) = 2(gar(C)− 1), where gar := H1(C,OC) is the

arithmetic genus of C;

• the linear system |K̂C | has base points over the singular points of C.

1
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.

Let C be a smooth projective curve of genus g(C) = g ≥ 2, and let KC (resp.

ωC) a canonical divisor (resp. line bundle). We fix a basis ψ1, ..., ψg of H0(C, ωC)

and define the map:

φK : C −→ P(H0(C, ωC)∨) ∼= Pg−1

p 7→ (ψ1(p) : ... : ψg(p))

which is called the canonical morphism.

Theorem 1.1 (Canonical Embedding ([1] pag 12-13)). Let C be a smooth

curve of genus g ≥ 2. If C is not hyperelliptic then the canonical map is an

embedding. Otherwise the canonical map factorizes as follows:

C
φK

//

π ��

Pg−1

P1

νg−1

<<

where π is the quotient map induced by the involution of C and νg−1 is the

Veronese embedding of degree g − 1.

Definition 1.1.1 (Span of divisor). Let C be a smooth curve and φ : C → Pr

be a holomorphic map. For any effective divisor D on C we denote by Spanφ(D)

the intersection of all hyperplanes H ⊂ Pr such that:

• φ(C) ⊆ H or,

• φ∗(H) ≥ D.

In particular if D = p1 + .. + pk and dim(Span(D)) = k − 1 the points p1, .., pk

are said to be in general position.

Remark 1.1.2. We consider now the canonical map

φK : C → Pg−1 ∼= P(H0(C,KC)∨)

. Every hyperplane of Pg−1 has an equation given by a section of the canonical

bundle KC , or equivalently an element of |KC |. Span(φK(D)) is the intersection

of all hyperplanes that cut φK(C) in a divisor containing φK(D). This space has

codimension h0(C,KC −D).

This remark allows us to reformulate the Riemann-Roch theorem in geometric

terms:
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Theorem 1.2 (Geometric version of Riemann-Roch [1]). Given an effective

divisor D of degree d on a smooth curve C of genus g ≥ 2, we have:

dim(SpanφK(D)) = d− 1− dim |D| = d− h0(C,D).

Proof. From Remark 1.1.2 we know that:

dim(Span(φK(D))) = g − 1− h0(C,KC −D).

Now recall Riemann-Roch therem we can rewrite:

dim(Span(φK(D))) = g−1−h0(C,KC−D) = deg(D)−h0(C,D) = d−1−dim |D|.

�

For a hyperelliptic curve, Theorem 1.2 allows us to give a complete charac-

terization of its linear systems:

Proposition 1.1.3. Let C be a hyperelliptic curve of genus g with involution

i. Then every linear system |D| of degree d ≤ g and dimension dim |D| = r, is

equivalent to:

rg1
2 + p1 + ...+ pd−2r

where i(pj) 6= pk for every j, k = 1, ..., d− 2r.

Proof. Let D ∈ |D| a divisor. Since C is hyperelliptic it has an involution

i : C → C that exchanges the two sheets over P1. Suppose that D has k couples

of points which are orbits of i, or in other terms

D = (q1 + i(q1)) + ...(qk + i(qk)) + p1 + ...+ pd−2k.

Now from Theorems 1.2 and 1.1:

r = dim |D| = d− 1 dim Span(νg−1(π(D))),

but since π(D) is a set of k + d − 2k = d − k distinct points of P1, under

the Veronese’s map they became d − k points in general position in Pg−1, i.e.

dim Span(νg−1(π(D))) = d− k − 1. Then we conclude that:

r = d− 1− (d− 1− k) = k

as we wanted. �

Now assume that C is non-hyperelliptic, i.e., that φK is an embedding. Often,

with abuse of notation, we identify C and its points with the corresponding

canonical image.

Given a linear subspace V ⊆ H0(C, ωC), let us consider:

Ann(V ) : = {θ ∈ H0(C, ωC)∨ | θ(v) = 0 ∀v ∈ V } ⊆ H0(C, ωC)∨.
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We call this subspace annihilator of V . Let Ann(V ) := P(Ann(V )) ⊆ P(H0(C, ωC)∨)

be its projectivisation. Observe that the dimension of Ann(V ) is the codimension

of V minus one. Thanks to Remark 1.1.2 we can re-define Span(D), in Pg−1, as:

Definition 1.1.4. Given an effective divisor D on C, its projective span is

Span(D) = SpanφK(D) := Ann(H0(C, ωC(−D)) ⊆ P(H0(C, ωC)∨)

Example 1.1.5. Given a point p ∈ C, SpanφK(p) = {p}, while SpanφK(2p)

is the line tangent to C in Pg−1, SpanφK(3p) is the osculating plane to C, and

so on. For n distinct points p1, . . . , pn on C if we call D = p1 + . . .+ pn, we have

that SpanφK(D) coincides with the linear projective span of the points in Pg−1.

Given a linear subspace V ⊆ H0(C, ωC) we call the base locus DV of the linear

system |V | the scheme-theoretic intersection DV := Ann(V ) ∩ C. Observe that

the evaluation map of V is surjective onto ωC(−DV ).

1.2. Gonality and Clifford index

Definition 1.2.1. (Gonality) The gonality gon(C) of C is the following in-

teger:

gon(C) := min{deg(π)| π : C → P1 is a surjective morphism} = min{m| ∃ g1
m over C}.

Remark 1.2.2. Every hyperelliptic curve has one g1
2 and so is 2- gonal, and

for every curve C of genus g ≥ 1 we have that gon(C) ≥ 2.

Definition 1.2.3. (Clifford index) Given a curve C of genus g ≥ 4, we define

its Clifford index Cliff(C) as:

Cliff(C) := min{deg(D)− 2(dim |D|) | h0(C,D) ≥ 2, h1(C,D) ≥ 2}.

In case g = 2, 3 we define the Clifford index as follows:

• if g = 2, Cliff(C) := 0;

• if g = 3, Cliff(C) := 0 (resp. 1) if C is hyperelliptic (resp. trigonal).

For every divisor D such that h0(C,D) ≥ 2 and h1(C,D) ≥ 2, we say that D

contributes to the Clifford index.

We have the following upper bounds:

gon(C) ≤ bg + 3

2
c, Cliff(C) ≤ bg − 1

2
c,

with equality holding for a general curve in Mg.
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Remark 1.2.4. In [44] Coppens and Martens proved the following inequalities

(1.2.5) gon(C)− 3 ≤ Cliff(C) ≤ gon(C)− 2.

Ballico [5] showed that for a general curve C in the locally closed subset of curves

in Mg of gonality gon(C), it holds the equality on the right.

Let us discuss in some detail the case of plane curves

Lemma 1.1. Let C ⊂ P2 a smooth curve of degree d ≥ 2, then there is no g1
d−2

but it exist a g1
d−1 so the gonality of C is d− 1. The Clifford index of C is d− 4.

Proof. Suppose that it exists a divisor D with degree deg(D) = e ≤ d − 2

and h0(C,D) ≥ 2. From Bertini’s Lemma [1] we can find, if necessary, another

divisor D′ ∈ |D| such that D′ = p1 + ...+ pe where the pi’s are all distinct points.

Now the Riemann-Roch theorem tells us:

h0(C,KC −D) = g − 1− e+ h0(C,D) ≥ g − e+ 1,

so D′ does not impose independent conditions on the canonical system. Nonethe-

less the canonical system |KC | is cut out by hypersurfaces of degree d − 3 of P2

so every d − 2 points of C impose an independent condition, then an absurd.

We note as for any p ∈ C the lines through p define a g1
d−1. Moreover the the

linear system induced by the hyperplanes of P2, say |H|, defines a g2
d of C, and

its Clifford index is:

Cliff(H) = d− 4 = gon(C)− 3

then recalling Remark 1.2.4,we conclude that Cliff(H) = Cliff(C). �

Gonality also has a very natural geometric interpretation via the Geometric

Riemann-Roch Theorem:

Proposition 1.2.6. For every effective divisor D over C,

dim(Span(D)) ≤ deg(D)− 1.

If dim Span(D) < deg(D)−1, then degD ≥ gon(C). If on the other hand k is an

integer greater than or equal to gon(C), then there exists a divisor D of degree

degD = k with dim SpanD < degD − 1.

Proof. The first inequality is straightforward from Geometric Riemann Roch

1.2. Suppose now that dim Span(D) < deg(D) − 1; by Riemann Roch again

h0(C,D) ≥ 2. So there exist a linear subspace V ⊆ H0(C,D) of dimension 2 and

degree ≤ degD. Thus gon(C) ≤ degD. The other implication is immediate. �
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Remark 1.2.7. For example, a non-hyperelliptic curve C is trigonal if and

only if there exists three collinear points on C, a curve C is 4-gonal (i.e. gon(C) =

4) if and only if every three points p1, p2, p3 of C are not collinear, but there exist

a 4-uple of points of C that spans a plane.

Remark 1.2.8. In general, if C has gonality gon(C) = k then holds:

Cliff(C) ≤ k − 2.

In fact, considering the g1
k given by |D|, then from the geometric version of

Riemann-Roch theorem we have:

h1(C,D) = g − 1− dim Span(D) = g − 2.

So if g ≥ 4 the divisor |D| contributes to the clifford index and we conclude that

Cliff(C) ≤ degD − 2 dim |D| = k − 2.

1.3. Clifford’s theorem

Now we see one big player in this thesis, but first let we introduce a preliminar

lemma:

Theorem 1.3 (General position Lemma ([1] pag 107)). Let C ⊂ Pr be an

irreducible non-degenerate, possibly singular curve of degree d. Then a general

hyperplane H intersects C in d points any r of which are linearly independent.

Remark 1.3.1. This lemma can be read as: ”every subset of r points in C∩H
span H, for almost every hyperplan H of Pr”.

Theorem 1.4 (Clifford’s Theorem). Let C be a smooth curve of genus g ≥ 2

and |D| a (complete) linear system of degree d, then it holds:

(1.3.2) d ≥ 2 dim |D|.

Moreover (1.3.2) is an equality if and if one of these conditions is satisfied:

• D is the trivial or the canonical divisor;

• C is hyperelliptic and |D| is equivalent to a multiple of the g1
2.

Proof. We first show the inequality.

We claim that dim |D| ≥ r if and only if the linear system |D| contains every

subset of r points of C, more precisely for every p1, .., pr ∈ C (not necessarily

distinct) there exists a divisor P ∈ |D| of the form P = p1 + ...+ pr + P ′.
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Proof of Claim. We proof the claim inductively. If dim |D| ≥ 1 then there

exist a surjective map

φ|D| : C → P1,

so every point of C is contained in a fiber of φ|D|, but every fiber is a divisor in

|D|.
Now suppose the claim holds for dim |D| ≥ r − 1 and consider a linear system

|D| of dimension not less than r. Choose an arbitrary point p of C and consider

the subsystem |D− p|, which has dimension dim |D− p| ≥ r− 1. For hypothesis

|D − p| contains every subset of r − 1 points of C, then since p is choosen arbi-

trarely |D| contains every subset of r points.

On the other hand if |D| contains every r points of C, the subsystem |D− p1|
must have codimension 1 in |D|. Similarly |D − p1 − p2| has codimension 1 in

|D − p1|, and so on until we arrive at |D − p1 − ... − pk| which must have non

negative dimension. So in |D| we can span a linear subspace of dimension r then

dim |D| ≥ r. �

Suppose now that |D| and |D′| are two linear systems of dimension r and r′.

So for the previous lemma they contain respectively any r and r′ points of C;

the system |D +D′|, must contains any r + r′ points of C, so invoking again the

lemma:

dim |D +D′| ≥ r + r = dim |D|+ dim |D′|.

In particular every element of the canonical system |KC | can be written as the

sum D + (KC −D), where KC ∈ |KC | and D ∈ |D|, then set D′ := KC −D we

see that

g − 1 = |KC | = |D +D′| ≥ |D|+ |D′|.

Now from the Riemann-Roch theorem we have:

|D| − |D′| = d+ 1− g.

So summing up the two above inequalities we conclude

2 dim |D| ≤ d.

Suppose now that (1.3.2) is an equality and D is neither trivial or canonical.

Exchanging D and D′ if necessary, we can set degD ≤ g − 1 and dim |D| > 0.

If C is not hyperelliptic, there exists an hyperplan of Pg−1 that cuts the image

φ(C) on D + D′. But D contains g − 1 dependents points, against Lemma 1.3.
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If otherwise C is hyperelliptic, from Remark 1.1.3, we know that every linear

system |D| is equivalent to

rg1
2 + p1 + ...+ pd−2r.

So the equality is satisfied if and only if d = 2r, i.e. D = rg1
2, as wanted. �

Remark 1.3.3. This last statement can be restated as follows. We have seen

that the Clifford index of a curve C, Cliff(C) is defined as:

Cliff(C) := min{deg(D)− 2(dim |D|) | h0(C,D) ≥ 2, h1(C,D) ≥ 2}.

Then Clifford’s theorem tells us that Cliff(C) = 0 if and only if it exists a special

divisor D such that degD = 2 dim |D|, and this happens if and only if C is

hyperelliptic.

1.4. Linear stability

Definition 1.4.1. (Linear (semi)stability) A linear system |V | over C is lin-

early stable (resp. semistable) if for every linear subsystem |W | ⊆ |V | we have:

deg |W −DW |
dim |W |

>
deg |V |
dim |V |

(resp. ≥)

Remark 1.4.2. Let us make some remarks.

• Again, Clifford’s theorem can be rephrased saying that the canonical

system on a curve is linearly semistable, and it is stable if and only if

the curve is non-hyperelliptic.

• The linear system |V | and its linear subsystems |W | are not necessarily

complete;

• If |V | ⊆ |L| has a non zero base locus DV , then the linear subsystem:

V (−DV ) := V ∩H0(C,L−DV )

destabilizes it, because deg |V (−DV )| < deg |V | but dim |V (−DV )| =

dim |V |. So, systems with base points are always linearly unstable.

• Linear stability was introduced by Mumford in order to develop a simple

method to prove GIT stability results, indeed, it is proven in [48] that

linear semistability implies Chow stability and in [2] that linear stability

implies Hilbert stability.

Remark 1.4.3. We want to recall the notion of Chow’s stability for algebraic

varieties, focusing in particular on the case of (smooth) curve. Let C be a non
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degenerate irreducible curve in Pn, of degree d. We call G(n− 1, n) the space of

hyperplanes of Pn, and ZC ⊆ G(n− 1, n) the locus defined as follows:

ZC := {H ∈ G(n− 1, n) : H ∩ C 6= ∅}.

ZC is an irreducible divisor of G(n − 1, n) of degree d (ref [48]), so there exists

a form FC ∈ H0(G(n− 1, n),OG(n−1,n)(d)), called Chow’s form whose zero locus

is exactly ZC . Now the action of the group Sl(n,C) on Pn induces an action over

G(n−1, n) and similarly on H0(G(n−1, n),OG(n−1,n)(d)), we can apply the notion

of G.I.T. stability [48].

Definition 1.4.4. Let C ⊆ Pn be a non degenerate irreducible curve, and

FC its chow form. We say that C is Chow stable if the form FC ∈ H0(G(n −
1, n),OG(n−1,n)(d)) is G.I.T. stable under the action of the group Sl(n,C).

1.5. Clifford-type inequalities for sub-canonical systems

A linear system |V | is linearly stable if its ratio deg |V |/ dim |V | bounds from

below the ratio d/r for any grd ⊆ |V |. Changing point of view, given a linear system

on a curve, one can ask for a lower bound for this ratio d/r possibly lower than

the original ratio deg |V |/ dim |V |. This is what we do for canonical subsystems

of non-hyperelliptic curves, obtaining a bound depending on the codimension and

on the Clifford index of the curve. This new prospective is dictated by Xiao’s

method which we will use in the next chapter.

Theorem 1.5. Let C ⊆ Pg−1 be a canonical non-hyperelliptic curve. Let

V ⊆ H0(C, ωC) a linear subspace of codimension k ≤ g − 2. Then for any

W ⊆ V subspace of dimension dimW ≥ 2, we have:

deg |W −DW |
dim |W |

≥ 2g − 2−m
g −m− 1

.

where m := min{k,Cliff(C)}.

Proof. For any W ⊆ V we have the evaluation morphism:

W ⊗OC � ωC(−DW ),

where DW := Ann(W ) ∩ C is the base locus of |W |.
We begin by considering the case m = k.

Lemma 1.2. If k ≤ Cliff(C), then deg |V | = deg(ωC(−DV )) ≥ 2g−2−k, i.e.

degDV ≤ k.

Proof. We split the proof of the lemma in two cases:
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• If h0(C,DV ) ≥ 2, since h0(C, ωC(−DV )) ≥ dimV ≥ 2, then both DV

and ωC(−DV ) contributes to the Clifford index of C, so we have:

deg(ωC(−DV )) ≥ 2(h0(C, ωC(−DV ))−1)+Cliff(C) ≥ 2(g−k−1)+k = 2g−2−k,

as wanted.

• If h0(C,DV ) = 1, by the geometric version of Riemann-Roch (Theorem

1.2), we have that:

dim(Span(DV )) = degDV − h0(C,DV ) = degDV − 1.

Now, Span(DV ) ⊆ AnnV by construction, and

dimAnn(V ) = g − 1− dim(V ) = g − 1− (g − k) = k − 1.

Therefore, we can conclude that degDV ≤ k, and the claim is proven.

�

Let’s go back to the proof of Theorem 1.5. Let W ( V , with dimW ≥ 2. As

done for Lemma 1.2, we analyze the two following cases:

(i) If h0(C,DW ) ≥ 2, hence DW contributes to Cliff(C) since h1(C,DW ) =

h0(C, ωC(−DW )) ≥ dimW ≥ 2, then:

degωC(−DW ) ≥ 2(h0(C, ωC(−DW ))− 1) + Cliff(C) ≥ 2(dimW − 1) + k.

Hence:

deg |W −DW |
dim |W |

=
degωC(−DW )

dim |W |
≥ 2 +

k

dim |W |
≥ 2 +

k

dim |V |
=

2g − 2− k
g − k − 1

,

as wanted.

(ii) If h0(C,DW ) = 1 we can conclude degDW ≤ dim(AnnW ) + 1 as in the

proof of lemma 1.2. Setting kW := dim(AnnW ) + 1 = codim(W ), we

have:

deg |W −DW |
dim |W |

=
2g − 2− degDW

g − kW − 1
≥ 2g − 2− kW

g − kW − 1
.

Since W ⊆ V we can conclude that kW ≥ k.

Now, consider the function:

(1.5.1) f : [0, g − 1]→ R f(t) :=
2g − 2− t
g − t− 1

.

As

f ′(t) =
g − 1

(g − t− 1)2
> 0 ∀t ∈ [0, g − 1],
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we have that f is monotone strictly increasing. So, since kW ≥ k, we

obtain:

deg |W −DW |
dim |W |

≥ f(kW ) ≥ f(k) =
2g − 2− k
g − k − 1

,

as wanted.

Let us now treat the case k ≥ Cliff(C) =: c. We prove that for any W ⊆ V ,

with dimW ≥ 2:
deg |W |
dim |W |

≥ 2g − 2− c
g − c− 1

.

Like we did above, we focus on two cases:

(i) if h0(C,DW ) ≥ 2, then DW contributes to the Clifford index since

h1(C,DW ) = h0(C, ωC(−DW )) ≥ dimW ≥ 2.

So we have that

deg(ωC(−DW )) ≥ 2(h0(C, ωC(−DW ))− 1) + c ≥ 2 dim |W |+ c.

Then it follows that:

deg |W −DW |
dim |W |

≥ 2 +
c

dim |W |
≥ 2 +

c

g − c− 1
=

2g − 2− c
g − c− 1

.

(ii) If otherwise h0(C,DW ) = 1, then as in the previous case we can con-

clude:

degDW ≤ kW

and since kW ≥ k ≥ c, exploiting the monotonicity of the function f :

deg |W |
dim |W |

=
2g − 2− degDW

g − 1− kW
≥ 2g − 2− kW

g − 1− kW
= f(kW ) ≥ f(c) =

2g − 2− c
g − c− 1

.

�

Remark 1.5.2. Theorem 1.5 above is not a linear stability result for the

system |V | unless k ≤ Cliff(C) and deg |V | = 2g − 2− k, i.e. |V | has the biggest

possible base locus, according to Lemma 1.2.

The above result implies a stability result, as follows.

Corollary 1.5.3. Let V ⊆ H0(C, ωC) be a vector subspace of codimension

k, with k ≤ Cliff(C). If

deg |V | = 2g − 2− k

then |V | is linearly semistable. In particular the morphism induced on C is Chow

semistable.
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Proof. Let W ⊆ V . Let h ≥ k be the codimension of W in H0(C, ωC). By

Lemma 1.5 we have that, for m = min{Cliff(C), h},
deg |W −DW |

dim |W |
≥ 2g − 2−m

g − h−m
.

Now, m ≥ k, and we are done by the monotonicity of the function f defined in

(1.5.1):

deg |W −DW |
dim |W |

≥ 2g − 2−m
g −m− 1

= f(m) ≥ f(k) =
2g − 2− k
g − k − 1

=
deg |V |
dim |V |

.

�

Example 1.5.4. Given k ≤ Cliff C points p1, . . . , pk on C in general position,

clearly the system |ωC(−p1 . . .− pk)| satisfies the assumptions of Corollary 1.5.3,

as

deg(ωC(−p1 . . .− pk)) = 2g − 2− k and h0(C, ωC(−p1 . . .− pk)) = g − k.

Example 1.5.5. We see here that indeed for any set of k ≤ Cliff(C) points

on C, the system |ωC(−p1 . . .− pk)| satisfies the assumptions of Corollary 1.5.3.

Indeed, we claim that

h0(C, p1 + . . .+ pk) = 1.

Assume by contradiction that h0(C, p1 + . . .+ pk) ≥ 2: we would have a g1
d on C

with d ≤ k hence

gon(C) ≤ d,

but from Ballico’s result (4.2) we obtain:

k + 2 ≤ gon(C) ≤ d ≤ k,

which gives a contradiction. From Riemann-Roch theorem

h0(C, ωC(−p1 . . .− pk)) = 2g − 2− k + 1− g + h0(C, p1 + . . .+ pk) = g − k.

Hence the linear series |ωC(−p1 . . . − pk)| satisfies the hypothesis of Corollary

1.5.3, so it is linearly semistable.

1.6. Chevalley-Weil formula

The Riemann existence theorem [45] allows us to construct every smooth

curve C as a finite cover over P1 with a given monodromy group G (that satisfies

certain conditions). From this recipe it is interesting and will be useful later, to

see how the cohomology groups (H1(C) in particular) of C behave under the

action of G. For smooth curves this question is answered by the Chevalley-Weil

theorem which we now introduce.
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Let f : C → C ′ be a separated finite morphism of curves of degree d [45]. We

call it a Galois covering if the field extension of the functions fields K(C)/K(C ′)

is Galois. Geometrically this means that the group of covering transformations:

Cov(C/C ′) := {σ : C → C | f(σ(p)) = f(p) ∀p ∈ C}

acts trasitively on any fiber of f .

A Galois covering has the following properties:

• any fiber f−1(Q) with Q ∈ C ′, has the same number of points (counted

with multiplicity) equal to d;

• called Q1, ..., Qr ∈ C ′ the branching points of f , and Pi ∈ f−1(Qj)

ramification points over Qj, every Pi has the same multiplicity ei called

ramification index ;

• for every point P ∈ f−1(Q) there exists a stabilizier subgroup of the

covering group GP := {g ∈ G | g(P ) = P}, which is cyclic of cardi-

nality |GP | = ei, and given two ramification points P, P ′ ∈ f−1Q their

stabilizier subgroups are conjugated each other;

An element of GP is called a local monodromy if its primitive char-

acter χGp → C∗ is exp 2iπ/ei.

• Given a sheaf F of OC , G acts on f∗F , where the action on a local

section ψ is:

g ∗ ψ := ψg−1.

Following this last property, if we consider the sheaf of differential forms ωC ,

then the action of G induces a representation over the vector space of global sec-

tion H0(C, ωC). Given a character χ and called ρχ the irreducible representation

associated, in general we can write:

dχνχ = dimH0(C, ωC)χ,

where νχ labels the multiplicity of the representation and dχ is the dimension of

the irreducible one.

We recall that given an element g ∈ G of order n, its matrix represen-

tation ρ(g) has eigenvalues λ1, ..., λd which are of the form exp(2πiα/n) with

α = 0, 1, ..., n− 1.

In particular, this holds for the monodromies gi of the branching points Qi.

We indicate with Nα,i the numbers of eigenvalues equal to exp(2πiα/n).
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We define < q >:= q−cqb the fractional part of q ∈ R, with cqb integer part

of q.

The Chevalley-Weil formula gives the multiplicities νχ as function of ei and

Nαi:

Theorem 1.6 (Chevalley-Weil formula). Let f : C → C ′ be a Galois covering

of curves with Galois group G. Let eµ and Nαµ as above. Then the multiplicity

νχ of a given irreducible character χ in H0(C, ωC) is given by:

νχ = dχ(gY − 1) +
n∑
i=1

µi−1∑
α=1

Niα < −
α

µi
>+ σ

where σ = 1 if χ is the trivial character and zero otherwise.

In particular if C ′ = P1, we have H0(P, ωP1) = H0(C, ωC)χtrivial
= 0. If G

is abelian, then every irreducible representation has degree one. We can put

together these remarks as follows:

Corollary 1.6.1. Let f : C → P1 be a Galois covering with an abelian

covering group G. Then the multiplicity νχ of a given non trivial character χ in

H0(C, ωC) is given by:

νχ = −1 +
n∑
i=1

µi−1∑
α=1

Niα < −
α

µi
>

1.6.1. An easy application. Consider the smooth curve C defined by the

affine equation in A2:

yn = x(x− 1)(x− λ),

with n ≥ 4. This equation describes a cyclic covering of P1, branched over

the four points {0, 1, λ,∞}. Its Galois group is obviously Z/nZ. Call σ ∈ Z/nZ
a generator of G that acts on C as:

(x, y)→ (x, η(σ)y)

with η(σ) primitive n-th root of unity. The characters group {χi}n−1
i=0 send χi :

η(σ)→ ηi(σ).

Therefore we find that:

at Q1, Q2, Q3 Nα,i = 1 if α = i Nα,i = 0 otherwise;

at Q4 Nα,i = 1 if α = (n− 3)i Nα,i = 0 otherwise;
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Then according to the Chevalley-Weil formula we find that the multiplicity

of the representation of ηi is:

dimH0(C, ωC)i = vi = −1+ < − i
n
> + < −(n− 3)i

n
> +σ

=

{
0 if i = 0;

2−c3i
n
b otherwise

In Chapter 3 we will use a generalization of this example.

1.7. Some results on gonality of curves

Let C be a smooth curve. In general it can be a hard task to find the gonality

γ(C) (and the Clifford index) of C and only few general results are known. For

the applications to fibred surfaces we will need some result, focusing in particular

on the case of irreducible curves which are cyclic covering of P1 of degree d, with

affine equation:

(1.7.1) yd = (x− λ1)α1(x− λ2)α2 ...(x− λn)αn

where α1 + α2 + ...+ αn ≡ 0 mod n, and λ1, ..., λn ∈ C.

Remark. The condition α1 + α2 + ...+ αn ≡ 0 mod n forces that there is

no branching point at infinity, i.e. that λi are all the branching points of C.

Remark. We notice that each permutation of the exponents does not affect

the gonality, the same if we multiply each αi by a factor k such that gcd(k, d) = 1.

So the result stated below applies precisely to the class of equivalence of equations

linked by the trasformation

(α1, α2, ..., αn) 7→ (kαπ(1), kαπ(2), ..., kαπ(n))

with π permutation of {1, 2, ..., n} and gcd(k, d) = 1.

Theorem 1.7 (Hyperelliptic/elliptic criteria [58]). Let C be the smooth curve

associated to the affine equation 1.7.1. Then C is hyperelliptic or elliptic (in other

word γ(C) = 2) if and only if one of these conditions is fulfilled:

(i) d = 2;

(ii) d ≥ 4 is even and all but 2 of the ai are equal to d/2

(iii) n = 3, d ≥ 3

(iv) n = 4, d ≥ 3 and (a1, a2, a3, a4) is equivalent to (a, a, d− a, d− a)

Theorem 1.8 (Trigonality criteria [57]). The curve C given by the equation

1.7.1 is trigonal if and only if one of the following conditions is satisfied:
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• n = 3 and d ≥ 7, and (α1, α2, α3) ∼ (1, 2, d− 3);

• n = 4 and d ≥ 4, and (α1, α2, α3, α4) ∼ (1, 1, 1, d− 3);

• n = 4 and d ≥ 5, and (α1, α2, α3, α3) ∼ (1, 2, d− 2, d− 1);

• n = 5 and d ≥ 7, and (α1, ..., α5) ∼ (1, 1, 1, d− 2, d− 1);

• n = 6 and d ≥ 7, and (α1, ..., α6) ∼ (1, 1, 1, d− 1, d− 1, d− 1);

• n ≥ 5 and d = 3;

• n ≥ 3 and d ≥ 6, d is divisible by 3, and all but two of αi are divisible

by d/3.

1.8. Vector bundles and their stability on curves

Definition 1.8.1 (Vector bundles on curves). A vector bundle E of rank n

over a smooth curve B, is a complex manifold of dimension n + dimB = n + 1

with the additional data:

(i) A smooth map π : E → B, such that every fiber Ex is a complex vector

bundle of dimension n.

(ii) There exists an open cover U (in the analytic topology) of X such that

on every U ∈ U, it holds:

π−1(U)
ψ

//

π
##

U × Cn

P
{{

U

where P is the projection on the first factor, and ψ is a biholomorphism.

Remark. If Ui;Uj ∈ U are such that Ui∩Uj 6= ∅, then there exists a function:

gij : Ui ∩ Uj → Gl(n,C)

such that:

(π−1
Ui

)πUj
(x, v) = (x, gij(x)v) for x ∈ Ui ∩ Uj and v ∈ Cn.

Such functions are called transition functions and U is called trivializing cover.

A vector bundle whose transition functions are the identity matrix, is called a

trivial bundle.

A vector bundle such that there exists a trivialing cover such that the transi-

tion functions are constant is called flat bundle.

Definition 1.8.2 (Degree and Slope of Vector Bundles). Given a vector bun-

dle E over a curve B the degree of E , deg(E), is the degree of the determinant
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line bundle det E := ∧rk EE . Moreover we define its slope µ(E) as:

µ(E) :=
deg(E)

rk(E)

Definition 1.8.3 (Unitary flat vector bundle). A flat vector bundle of rank

n is called unitary if its transition functions have values in the unitary group

U(n,C) ⊆ Gl(n,C).

Remark 1.8.4. We remind that every unitary flat vector bundle E has degree

zero.

Definition 1.8.5 (Stable/semistable vector bundle). A vector bundle E over

a curve B is called stable (resp. semistable) if for every proper sub vector bundle

0 6= F ⊂ E it holds:

µ(F) < µ(E) resp. µ(F) ≤ µ(E).

Remark 1.8.6. Many authors define the condition of stability (resp. semista-

bility) as a property that must holds for every subsheaf F of E . Moreover it can

be proven that ours definition is equivalent to this one, in fact for every subsheaf

F its saturation F̄ is the smallest vector bundle that contains F , and they satisfy

the relation:

µ(F) ≤ µ(F̄).

Definition 1.8.7 (Harder-Narasimhan filtration). [36] Let F be a vector

bundle over a smooth projective curve B. There exists a unique sequence of

vector sub-bundles of F :

(1.8.8) 0 = F0  F1  . . .  Fk−1  Fk = F

satisfying the conditions:

• for i = 1, . . . , k Fi/Fi−1 is a semistable vector bundle;

• For any i = 1, . . . , k setting µi := µ(Fi/Fi−1), we have:

µ1 > µ2 > . . . > µk.

The filtration (1.8.8) is called Harder-Narasimhan filtration of F .

We set µ−(F) := µk, and call it the final slope of the sheaf.

Remark 1.8.9. Note that it holds the formula:

degF =
k∑
i=1

ri(µi − µi+1).

Indeed, considering the exact sequence of vector bundles:

0→ Fk−1 → Fk → Fk/Fk−1 → 0,
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from the additivity property of degree, we can say degFk = degFk−1+degFk/Fk−1.

Similarly, we have that: degFk−1 = degFk−2 + degFk−1/Fk−2, and so on. By

induction we can conclude that:

degFk = deg(Fk/Fk−1) + deg(Fk−1/Fk−2) + . . .+ deg(F2/F1) + deg(F1)

=
k∑
i=1

deg(Fi/Fi−1).

Now, from the definition of slope, for every i = 1, .., k we have degFi/Fi−1 =

µi(ri − ri−1), So, setting µk+1 = 0 and rk+1 = rk, we obtain the desired formula

degF = degFk =
k∑
i=1

µi(ri − ri−1) =
k∑
i=1

ri(µi − µi+1).

Let π : PB(E) → B be the projective bundle of one dimensional quotients of

E (Grothendieck’s notations); and let OP(E)(1) be the associated tautological line

bundle.

Definition 1.8.10. We say that E is a nef (resp. ample, semi ample) vector

bundle if OP(E)(1) is nef (resp. ample, semiample) over PB(E).

Equivalently we can say:

Proposition 1.8.11. Let E be a vector bundles. Then E is nef if every

quotient bundle Q:

E ′ → E → Q
has non-negative degree ([13]).

In particular we recall that:

Definition 1.8.12 (ample and semi-ample line bundle). The line bundle L

is semi-ample if it there exists an integer m such that L⊗m is base point free (or

equivalently is globally generated)

The line bundle L is ample if exists an integer n such that L⊗n is very ample, or

in other term, given an embedding φ : B → Pr, L = φ∗OPr(1).



CHAPTER 2

Surfaces

2.1. Preliminaries on fibred surfaces

Definition 2.1.1. We call fibred surface or sometimes simply fibration the

data of a surjective morphism with connected fibers f : S → B from a smooth

projective surface S to a smooth projective curve B.

We denote with b = g(B) the genus of the base curve. A general fibre F is a

smooth curve and its genus g = g(F ) is by definition the genus of the fibration.

From now on, we consider fibrations of genus g ≥ 2.

Let Kf := KS−f ∗KB (resp. ωf := ωS⊗(f ∗ωB)∨) the relative canonical divisor

(resp. line bundle). Recall that given a surface S a (−1)-curve is a non-singular

rational curve C ⊆ S such that C2 = −1.

Definition 2.1.2. We say that f is relatively minimal if it does not contain

any (−1)-curves in its fibres.

Definition 2.1.3. A divisor D on S is relatively nef with respect to the

fibration f if for every irreducible component C of a fiber F , D.C ≥ 0.

Proposition 2.1.4. A fibration is relatively nef if and only ifKf is a relatively

nef divisor.

Proof. By duality theory [13] ωf restricted to every fiber is the dualizing

sheaf of the fiber. So for every smooth fiber F since g = g(F ) ≥ 2

Kf .F = deg(ωf |F ) = degωF = 2(g − 1) > 0.

Every singular fiber F = C1 + ... + Ck can be decomposed in sum of irreducible

components C1, ..., Ck. For any j = 1, ..., k we have

Kf .Cj = deg(ωf |Cj
) = degωCj

− C2
j = 2(gar(Cj)− 1)− C2

j .

Thanks to the Zariski Lemma ([13], lemma 8.2, pag. 111 ) C2
j ≤ 0 and in

particular if the fiber is connected C2
j < 0 for every j = 1, ..., k. So the only

components where degωf |Cj
is negative are the rational components E with E2 =

−1, but these do not exist since f is relatively minimal.

�
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Remark 2.1.5. We stress that every fibration f : S → B with genus g ≥ 2

can be reduced to a relatively minimal fibration conctracting any (−1) curve

contained in the fibers.

Definition 2.1.6. We say that a fibred surface is:

- smooth if every fiber is smooth;

- isotrivial if all smooth fibres are mutually isomorphic;

- a Kodaira fibration if it is smooth but not isotrivial;

- locally trivial if f is smooth and isotrivial (equivalently if f is a fibre

bundle ([13])):

- trivial if S is birationally equivalent to F ×B and f corresponds to the

projection on B. If b > 0 and f is relatively minimal this is equivalent

to S = F ×B.

- Semistable if every fiber is nodal and f is relatively minimal.

We have the following relative numerical invariants for fibred surfaces:

• K2
f = K2

S − 8(g− 1)(b− 1) the self-intersection of the relative canonical

divisor;

• χf := χ(OS)−(g−1)(b−1) the relative Euler characteristic (the equality

follows from Leray’s spectral sequence);

• ef := e(S)− e(B)e(F ) = e(S)− 4(g − 1)(b− 1) the relative topological

characteristic (with e(X) topological characteristic of X);

• qf := q − b the relative irregularity, with q = h1(S,OS) irregularity of

S.

These invariants are not all independent: they indeed are linked by the rela-

tion:

Proposition 2.1.7 (Noether relation). With the notation above we have:

12χf = K2
f + ef

In section (2.2.1) we give a proof of the Noether relation.

For those invariants are also known the following inequalities:

• K2
f ≥ 0 and K2

f = 0 if and only if f is locally trivial [3] (see Remark

2.2.16);

• χf ≥ 0 and χf = 0 if and only if f is locally trivial [2];

• ef ≥ 0 and ef = 0 if and only if f is smooth [13];

• qf ≤ g and equality holds if and only if f is trivial [14].

Remark 2.1.8. We note as since ef ≥ 0, from the Noether relation we see

12χf ≥ K2
f
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which is an equality if and only every fiber is smooth (i.e. f is smooth)

2.2. The Hodge bundle

Definition 2.2.1. The rank g vector bundle f∗ωf is called the Hodge bundle

of the fibred surface.

For this vector bundle it holds:

Proposition 2.2.2. χf = deg f∗ωf .

This result follows from the the Groethendieck-Riemann-Roch formula, which

we now recall in its full generality.

Consider the following setting:

(2.2.3) f : X → Y

where f is a proper map between two smooth algebraic varieties X and Y . We

recall that the Todd class todd(X) of a smooth algebraic variety X is an element

of its rational cohomology ring H∗(X,Q) which at the first degrees reads as:

(2.2.4) todd(X) = 1 +
1

2
c1(X) +

1

12
(c2

1(X) + c2(X)) + ...

where ci(X) are che Chern classes of X. Let E be a vector bundle over X, then

we define its lower shriek through f , f!(E) ∈ K(Y ) as

(2.2.5) f!(E) =
∑
i≥0

Rif∗E

and its chern character ch(E) ∈ H∗(X,Q):

(2.2.6) ch(E) =
∑
i≥0

ch(E)i ∈ H∗(X,Q)

where the first components are:

ch0(E) = rk(E);

ch1(E) = deg(E);

ch2(E) =
1

2
(c1(E)2 − c2(E));

Now we are ready to state the Groetendieck-Riemann-Rock Formula([1] pag

333)

(2.2.7) ch(f!(E)). todd(Y ) = f∗(ch(E). todd(X))

We remark that this formula says in particular that the upper degree term of

f!(E). todd(Y ) ∈ H∗(Y,Q) is equal to the upper degree term of ch(E). todd(X) ∈
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H∗(X,Q).

Proof of proposition (2.2.2). Firstly we recall the Leray’s spectral se-

quence ([13] pag 14), which is an exact sequence of vector spaces, which in our

case has this form:

0→ H1(B, f∗ωf )→ H1(S, ωf )→ H0(B,R1f∗ωf )→ 0.

For duality theory, since every fiber is connected R1f∗ωf = OB, and so

h1(S, ωf ) = h1(B, f∗ωf ) + 1.

From Hirzebruch-Riemann-Roch theorem we have:

χ(Kf ) =
Kf .(Kf −KS)

2
+ χS = −2χBχF + χS,

χ(f∗ωf ) = deg f∗ωf + rk f∗ωf (1− b) = deg f∗ωf + g(1− b).

Applying Serre’s duality we have:

h2(Kf ) = h0(KS −Kf ) = h0(f ∗KB) = h0(KB) = b.

So, combining the previous equations:

χ(Kf ) = h0(Kf )−h1(Kf )+h
2(Kf ) = h0(f∗Kf )−h0(f∗Kf )+b−1 = χ(f∗ωf )+(b−1),

and recalling that:

deg f∗ωf + (g − 1)(1− b) = χ(f∗ωf ) + (b− 1) = −2χBχF + χS;

we finally obtain:

deg f∗ωf = χS − χBχF =: χf .

as wanted. �

We have the following decompositions of the Hodge bundle as a direct sum-

mand of vector sub-bundles:

• (First Fujita decomposition [30])

(2.2.8) f∗ωf = O⊕qfB ⊕ E ,

where E is nef (see Section 1.8) and H0(B, E∨) = 0;

• (Second Fujita decomposition [31] [17])

(2.2.9) f∗ωf = A⊕ U ,

with A ample and U unitary flat (See section 1.8).
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Definition 2.2.10. Following [34], we define the unitary rank uf of the fibred

surface to be the following integer

uf := rkU .

Remark 2.2.11. Comparing the two decompositions, since every trivial bun-

dle is unitary flat, we have:

O⊕qfB ⊆ U ,
and then it holds that qf ≤ uf . Moreover, degU = 0 and degA > 0, hence

χf = deg f∗ωf = degA,

and uf = g if and only if χf = 0 (equivalently f is locally trivial). Catanese and

Dettweiler first gave examples [16] [17] of fibred surfaces for which the unitary

summand is not semiample, thus disproving a long standing conjecture of Fujita.

They proved that semi-ampleness of the Hodge bundle is indeed equivalent to U
having finite monodromy (see Chapter 3.1 for definition). In all the examples in

loc. cit. qf = 0, hence in particular the strict inequality qf < uf holds. Note

moreover that for any fibred surface such that the monodromy of U is infinite,

the inequality qf < uf also holds “up to base change”, i.e. for any fibration f̃

obtained from f via base change, we still have qf̃ < uf̃ . On the other hand, if

the monodromy is finite, then there exist a base change a : B̃ → B such that the

induced fibration f̃ has qf̃ = uf̃ . See [34].

2.2.1. Noether’s relation. We are now ready to prove Proposition 2.1.7

Proof of proposition 2.1.7. Now the proper morphism f : S → B given

by a fibred surface, and let E = ωf the relative dualizing sheaf. Then the formula

2.2.7 in this case is:

ch(f!(ωf )). todd(B) = f∗(ch(ωf ). todd(S))

On the left side the highest degree component is:

(ch(f!(ωf )). todd(B))1 = ch(f!(ωf )0 todd(B)1 + ch(f!(ωf )1. todd(B)0

= (g − 1)(b− 1) + deg f∗ωf ,

and on the right side is:

(ch(ωf ). todd(S))2 = ch(ωf )0 todd(S)2 + ch(ωf )1 todd(S)1 + ch(ωf )2 todd(S)0

=
1

12
(K2

S + e(S)) +
Kff

∗KB

2
.
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So comparing the two sides:

(2.2.12) (g − 1)(b− 1) + deg f∗ωf =
1

12
(K2

S + e(S)) +
Kf .f

∗KB

2
.

If we now rewrite 2.2.12 using only ef and ωf , we have:

(2.2.13) (g − 1)(b− 1) + deg f∗ωf =
1

12
(K2

f + ef ) + (g − 1)(b− 1),

and so the result is obtained. �

2.2.2. Classic slope inequality. A slope inequality for the fibred surface is

an inequality of the form:

(2.2.14) K2
f ≥ aχf ,

where a > 0 is a positive rational number depending on the geometry of the

fibration. The first of this kind of results is the celebrated slope inequality proved

by Xiao in [59] and by Cornalba and Harris in [21] (see also [54]).

Theorem 2.1 (Xiao-Cornalba-Harris Slope inequality). Let f : S → B be a

relatively minimal not isotrivial fibration, and let g = g(F ) ≥ 2 the genus of the

general (smooth) fiber. Then holds

(2.2.15) K2
f ≥ 4

g − 1

g
χf ,

A third proof was given later by Moriwaki in [47]. So, here a is an increasing

function of g.

This statement will be proven in section 2.2.5 via Xiao’s method.

Remark 2.2.16. Suppose that K2
f = 0. Then by the slope inequality we have

χf = 0 so f is locally trivial. If, on the other hand, f is locally trivial; then by

(ii) we have χf = 0, then by Noether’s relation and the non-negativity of ef we

have K2
f = 0.

2.2.3. Clifford index and Gonality for families of curves. We have

seen in Section 1.2 that gonality and Clifford index are some important proper-

ties of a smooth curve C. In particular gonality give the minimum degree of any

cover π : C → P1 over P1, and Clifford index says how much ”long” is the free

resolution of the ring of regular functions R(C) ([35]).

Over the moduli space Mg of smooth curves of genus g, the function:

[C] 7→ Cliff(C)
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is a well defined lower semicontinuous function [26] [29]. This allows us to give

the following:

Definition 2.2.17. Given f : S → B a relatively minimal fibred surface. We

define

cf := max
t∈B
{Cliff(Ft) |Ft is a smooth fibre of f} = Cliff(F ) for F general fibre of f

and call it the Clifford index of f.

2.2.4. Xiao’s method. In this section we recall the main results of Xiao’s

method, introduced by Xiao in his seminar paper [59], and further developed

by Konno and Barja. It is worth to develop in full generality and detail the

construction, as the precise statement we need is not immediate to find in the

literature.

Let f : S → B be a relatively minimal fibration and fix a divisor D on S. For

every non zero vector subbundle F ⊆ f∗OS(D), the natural homomorphism

f ∗F ↪→ f ∗f∗OS(D) −→ OS(D)

yields a rational map

S
ψ

//

f ��

PB(F)

π
||

B

such that π ◦ ψ = f . The indeterminacy locus of the map ψ is described by the

following result, whose proof is immediate.

Theorem 2.2. [Ohno [51]] In the above situation, there exists a blow up

ε : Ŝ → S and a morphism λ := ψ◦ε : Ŝ → PB(F) such that λ∗LF ∼ ε∗(D−Z)−E
where

• Z is an effective divisor on S;

• E is a ε−exceptional effective divisor of Ŝ;

• LF a hyperplane section of PB(F) i.e. a divisor associated to OP(F)(1).

Definition 2.2.18. In this setting we define:

• M(D,F) := λ∗LF the moving part of the vector subbundle F ;

• Z(D,F) := ε∗Z + E the fixed part of the vector subbundle F ;

• N(D,F) := M(D,F)−λ∗µ(F)F where we note that ε does not change

the general fibre of f ; then we can rewrite: N(D,F) = M(D,F) −
µ(F)F with F a general fibre of f .
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The Xiao’s method makes a crucial use of the Harder-Narasimhan filtration

and a following result of Miyaoka-Nakayama.

Theorem 2.3 (Miyaoka-Nakayama). Let F be a locally free sheaf on a pro-

jective curve B. Let Σ be the general fibre of π : PC(F) → C. The Q-divisor

LF − xΣ is nef if and only if x ≤ µ−(F).

Remark 2.2.19. From Miyaoka-Nakayama’s result we see straightforwardly

that µ−(F) ≥ 0 if and only if F is a nef vector bundle on B.

Remark 2.2.20. In the case G = f∗ωf , it is important to notice that the

second to last subsheaf is precisely the ample part in the second Fujita’s decom-

position: Fl−1 = A. Indeed, f∗ωf is nef, and the subsheaf U = f∗ωf/A is a

subsheaf of maximal rank in f∗ωf with (minimal) degree 0.

Note that for the Hodge bundle the last slope µl is greater or equal to 0 and

µl = 0 if and only if U 6= 0.

We are now ready to expose the heart of Xiao’s method:

Theorem 2.4. (Xiao’s key Lemma [59]) Let f : S → B be a fibred surface.

Let D be a divisor on S and suppose that there exist a sequence of effective

divisors:

Z1 ≥ Z2 ≥ . . . ≥ Zs ≥ Zs+1 := 0,

and a sequence of rational numbers

µ1 > µ2 > . . . . . . > µs ≥ µs+1 := 0,

such that for every i = 1, . . . , s Ni := D−Zi−µiF is a nef Q−divisor. Then for

any set of indices {j1, . . . , js} ⊆ {1, . . . , l} we have

D2 ≥
s∑
i=1

(dji + dji+1
)(µji − µji+1

)

where dj := NjF .

Proof. Just observe that the assumptions imply the following:

N2
ji+1
−N2

ji
= (Nji+1

+Nji)(Nji+1
−Nji) = (Nji+1

+Nji)(Zji − Zji+1
− (µi − µi+1)F )

≥ (dji + dji+1
)(µi − µi+1),

and that
s∑
i=1

(N2
ji+1
−N2

ji
) = −N2

j1
+N2

js ≤ N2
js ≤ D2.

�
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2.2.5. Main inequality. We are now ready to state the version of Xiao’s

basic result in the form needed. Note that this is an expanded version of the

inequality stated in [12, Remark 24].

Theorem 2.5. Let f : S → B be a fibred surface. Let D be a nef divisor on

S and G ⊆ f∗OS(D) be a rank r subsheaf. Let d′ = MF where M = M(D,G).

Suppose that there exists a real number α > 0 such that for every linear

subsystem |P | of |M|F |

(2.2.21)
deg |P |
dim |P |

≥ α.

(i) The following inequality holds:

(2.2.22) D2 ≥ 2α(r − 1)

r
deg G = 2α(r − 1)µ(G).

(ii) If moreover G is nef, then, for every non negative integer d ≤ d′, the

following inequality holds:

(2.2.23) D2 ≥ 2αd

d+ α
deg G.

Proof. Let

(2.2.24) 0  G1  . . . .  Gk−1  Gk = G

be the Harder-Narasimhan filtration of G. We note that in general this filtration

need not necessarily be related to the Harder-Narasimhan filtration of f∗OS(D)

(although this will happen in the application: see Remark 2.3.2).

Following Ohno’s construction in Theorem 2.2, we consider a suitable blow up

ν : Ŝ → S and over Ŝ for every index i we consider the divisors Mi := M(D,Gi)
and Zi := Z(D,Gi), which are respectively nef and effective. Call ri = rkGi and

di := MiF . We also set Gk+1 := Gk = G.
Let us first assume that G s nef and prove inequality (2.5). The final slope of

G is µk ≥ 0 by Remark 2.2.19 and we can choose µk+1 = 0 and Zk = Zk+1. The

sequence (Zi, µi) clearly satisfies by construction:

Z1 ≥ Z2 ≥ . . . ≥ Zk = Zk+1,

and

µ1 > µ2 > . . . > µk ≥ µk+1 := 0.

Observing that µi coincides with µ−(Gi) we have by Miyaoka’s Theorem 2.3 that

the divisors

Ni := M(D,Gi)− µiF
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are all nef Q−divisors over Ŝ. Since the intersection product is invariant under

birational morphism we have (ν∗D)2 = D2. So, we can apply Theorem 2.4 to

estimate (ν∗D − Zk)2. We make a wise use of the choice of the indexes in the

theorem.

Firstly we use the set of indexes {1, . . . , k}, obtaining the inequality

(ν∗D − Zk)2 ≥
k∑
i=1

(di + di+1)(µi − µi+1),

which in its extensive form reads as follows

(ν∗D−Zk)2 ≥ (d1 + d2)(µ1−µ2) + . . .+ (dk−1 + dk)(µk−1−µk) + (dk + dk+1)(µk).

Observe that assumption (2.2.21) implies that for any i, di ≥ α(ri − 1), because

in case r1 = 1, the inequality holds trivially. Using this inequality and the fact

that ri ≥ ri−1 + 1 for i = 1, . . . , k − 1 and that rk+1 = rk, we have:

(ν∗D − Zk)2 ≥
k∑
i=1

(di + di+1)(µi − µi+1) ≥

≥ 2α(
k−1∑
i=1

ri(µi − µi+1) + rkµk)− α(µ1 + µk) =

= 2α deg G − α(µ1 + µk).

Consider now the list of indexes {1, k}: we have

(ν∗D − Zk)2 ≥ (d1 + dk)(µ1 − µk) + (dk + dk+1)(µk) ≥ dk(µ1 + µk).

Eventually, combining the last two inequalities we obtain:

(ν∗D − Zk)2 ≥ 2αdk
dk + α

deg G.

Now observe that

(ν∗D − Zk)2 = D2 − 2ν∗DZk + Z2
k ≤ D2,

where the last inequality follows form the fact that ν∗D is nef and Zk effective

and from Z2
k ≤ 0 by Hodge index theorem. Now, consider the following function:

g(t) :=
2αt

α + t
,

which is monotone increasing for t ≥ 0. From the hypothesis we have dk ≥ d so

we can deduce that

D2 ≥ 2αdk
dk + α

deg G = g(dk) deg G ≥ g(d) deg G =
2αd

d+ α
deg G,

and the proof of inequality (2.5) is concluded under the assumption that G is nef.
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In the non-nef case, just consider as in [12, Prop.8] the last nef subbundle in

the Harder-Narasimhan sequence: Gs, where s = max{i | µi ≥ 0}. Applying the

very same construction to Gs we can obtain

D2 ≥ 2αds
ds + α

deg Gs ≥ 2
α(rs − 1)

rs
deg Gs ≥ 2

α(r − 1)

r
deg G,

where the second inequality is obtained by choosing d = α(rs − 1), and the last

inequality follows from the monotonicity of the function g above and from the

fact that clearly deg Gs ≥ deg G. So, also inequality (2.2.22) is proved. �

Remark 2.2.25. As proved in [8], the vector subbundle Gs in the proof of the

above theorem is a maximal element in the set of nef sub-bundles of G: for any

nef sub-bundle of G it holds F ⊆ Gs.

In particular, if |G ⊗ C(t)| is linearly semistable for general t ∈ B, we can

take:

α =
deg |G ⊗ C(t)|
dim |G ⊗ C(t)|

.

and obtain the following well known result (see [12]).

Corollary 2.2.26. Let f : S → B be a fibred surface. Given D a nef divisor

on S and G ⊆ f∗OS(D) a rank r subsheaf. Let d = deg |G ⊗ C(t)| the degree

of the linear system |G ⊗ C(t)|, over a general fibre Ft. If |G ⊗ C(t)| is linearly

semistable, then

D2 ≥ 2d

r
deg G = 2dµ(G).

2.3. Slope inequalities

As promised in this section we prove, via Xiao’s method, the classical slope

inequality of Xiao-Cornalba-Harris, which we recall:

Theorem 2.6 (Classic Slope inequality). Let f : S → B be a relatively

minimal not locally trivial fibration, and g = g(F ) ≥ 2 the genus of a general

smooth fiber F . Then it holds:

K2
f ≥

4(g − 1)

g
χf .

Proof. Consider the relative canonical divisor Kf and the sheaf f∗OS(Kf ).

From duality theory we know that Kf |F = KF so the adjuction formula tells us

that:

Kf .F = degKf = degKF = 2(g − 1).
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We know from Clifford’s theorem 1.4 that every special linear system |L| over a

smooth curve satisfies the bound:

deg |L|
dim |L|

≥ 2

Then applying Theorem 2.2.14 setting D = Kf , G = f∗OS(Kf ), d = Kf .F and

α = 2:

K2
f ≥

2αd

d+ α
deg f∗OS(Kf ) =

4(g − 1)

g
χf .

where we used Proposition 2.2.2. �

Now let f : S → B be a relative minimal fibration of genus g ≥ 2. We are

now ready to prove our main estimates on the slope of fibred surfaces.

Firstly, using the first Fujita decomposition (2.2.8) we give a bound that

improves the main bound of Barja and Stoppino in [10]. Note that the proof is

much simpler than the proof of [10], where the authors needed to lift a general

projection on the fibre to obtain the desired subsheaf of the Hodge bundle.

Theorem 2.7. Let m := min{qf , cf}. The following inequality holds:

K2
f ≥ 2

2g − 2−m
g −m

χf .

Proof. First observe that in the hyperelliptic case m = 0 and the inequal-

ity is just the classical slope inequality. Assume that the general fibre is not

hyperelliptic.

Let us consider the first Fujita decomposition (2.2.8).

f∗ωf = E ⊕ O⊕qf .

If qf ≤ cf consider the vector bundle G := E . If qf ≥ cf consider the vector bundle

G := E⊕Oqf−cfB In both cases the fibre over a general t ∈ B G⊗C(t) ⊆ H0(Ft, KFt)

defines a linear subsystem of H0(Ft, KFt) of codimension m.

Let us start by observing that in case that the first vector subbundle in the

Harder-Narasimhan filtration of the Hodge bundle is of rank one (a line bundle),

we have d1 = 0 = r1 − 1. By the remark above and Theorem 1.5, we can apply

Theorem 2.5 to D = Kf and G as defined above, with α = 2g−2−m
g−m−1

. We thus

obtain

K2
f ≥

2αd

α + d
deg G = 2

2g − 2−m
g −m

χf ,

as desired. �

We shall now turn our attention on the influence of the unitary rank uf on

the slope.
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Theorem 2.8. The following inequalities holds:

K2
f ≥

{
2

(2g−2−uf )

(g−uf )
χf uf ≤ cf

2
(2g−2−cf )(g−uf−1)

(g−cf−1)(g−uf )
χf uf ≥ cf

Proof. As above, we can assume that F is non-hyperelliptic. Consider the

second Fujita decomposition (2.2.9) f∗ωf = A⊕U . As already observed, we have

that degA = deg f∗ωf . We distinguish the two following cases:

• If uf ≤ cf , then consider G = A. From Theorem 1.8.8 we can estimate

the degree of that linear subsystem as follows:

deg |A ⊗ C(t)| ≥ 2g − 2−m
g −m− 1

(g − uf − 1) = 2g − 2− uf =: d.

Then, applying Theorem 2.5 with D = Kf and G = A, we have:

K2
f ≥

2αd

α + d
degA = 2

2g − 2− uf
g − uf

χf ,

as wanted.

• If uf ≥ cf , using Theorem 1.5 we estimate the degree of the linear

system |A ⊗ C(t)| as:

deg |A ⊗ C(t)| ≥ 2g − 2− cf
g − cf − 1

(g − uf − 1) =: d.

Then applying Theorem 2.5 with D = Kf and G = A we have:

K2
f ≥

2αd

α + d
degA = 2

(2g − 2− cf )(g − uf − 1)

(g − uf )(g − cf − 1)
χf ,

and the proof is concluded.

�

Remark 2.3.1. Observe that these last inequalities are not symmetric in

min{uf , cf} as the one of Theorem 2.7. In case there exists a unitary flat subsheaf

U ′ of U , with rkU ′ ≥ uf − cf , one can improve the last inequality of Theorem

2.8. However, such a subsheaf U ′ need not to exist.

Remark 2.3.2. It is worth making the following remark. In Xiao’s method as

shown in Section 2.2.4, we use the Harder-Narasimhan sequence of the subsheaf G
of f∗OS(D). This in general is not related to the Harder-Narasimhan sequence of

f∗OS(D) itself. But in case G is a nef subsheaf of the Hodge bundle that contains

the ample summand A, then the Harder-Narasimhan filtration of G clearly is the

truncation of the filtration of f∗ωf .
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2.4. Comparison with the known results

We recall now the main results for slope inequalities which depend on qf and

cf ; the Barja-Stoppino inequality [10]

K2
f ≥ 4

g − 1

g−cm/2b
χf

where m := min{qf , cf}, and the Lu-Zuo inequality [42]

K2
f ≥ 4

g − 1

g − qf/2
χf .

Let us now compare our results with the ones cited above:

• The first inequality (0.1.6) improves ([10] thm 1.3 ) and, more impor-

tantly, is stronger than ([41] thm 1.3) in case qf ≤ cf . On the other

hand in case qf ≥ cf , inequality (0.1.6) gives a bound increasing with

the Clifford index. The inequality in ([42], thm 1.6) can be better, but

inequality (0.1.6) holds also when ([42] thm 1.6) is not applicable: no

genericity assumptions is needed, nor assumptions on g � m. More-

over, for m big, or uf and cf close to g−1
2

, the bound of inequalities

(0.1.6) and (0.1.7) becomes close to 6 (see Remark 0.1.8 below).

• Inequalities (0.1.7) are the first known slope inequalities where uf plays

a role.

• Inequalities (0.1.7) are of particular interest in view of the fact cited

above that uf can be strictly bigger than qf . In Section 3, following [18],

we give a first example of a fibred surface where the second inequality

is new. This fibred surface has invariants g = 6, qf = 0, cf = uf = 2,

and is not bielliptic. The bound of (0.1.7) is K2
S ≥ 4χf , while the other

previously known bounds are strictly smaller or not applicable.



CHAPTER 3

An example

Now we want to expose a first example of a fibred surface in which the bound

of Theorem 2.8 is better than the bound of Theorem 2.7 and of any other previous

bound. The known examples of fibred surfaces with high unitary rank ([16, 17,

18, 43]) all satisfy cf ≤ 1. It is therefore interesting to find examples with

Clifford index close to the unitary rank. This is a first example in this direction.

We begin giving some preliminary notions:

3.1. Local systems and monodromy

Definition 3.1.1 (Local system). Let X be topological space. A local system

V over X is a locally constant sheaf of C vector spaces.

Remark 3.1.2. We recall that a sheaf V (of C linear spaces) over a topological

space X is locally constant, if for every point p ∈ X exists an open neighbourhood

Up such that the restriction map:

Γ(V, Up)→ Vp

is an isomorphism of C-vector spaces.

Remark 3.1.3. In particular if X is an algebraic variety, flat vector bundles

over X correspond to local system: given a local system V, V⊗OX is a flat vector

bundle.

Now suppose that X is an arc connected space.

Let V be a local system and fix a point p ∈ X. Then to every loop γ : I → X

such that γ(0) = γ(1) = p, we can consider the local system γ∗V over the unit

interval I.

Since I is contractable ([23]) for every couple of point q, q′ ∈ I there exists

an isomorphism between the fibers Vγ(q) and Vγ(q′), so in particular choosing

q = 0, q′ = 1 we can define an isomorphism Fγ:

Fγ : Vp → Vp,

which is an automorphism of the vector space Vp.
33
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It may be shown (see [23]) that two homotopy equivalent loops γ, γ′ give the

same automorphism, and moreover it holds

Fγ∗γ′ = Fγ ∗ Fγ′ ; Fγ−1 = (Fγ)
−1.

where ∗ is the composition law in the corrisponding set.

This allows us to define:

Definition 3.1.4 (Monodromy of Local system). Let X an arc connected

topological space and V a local system of rank n over it. Fixing a point p ∈ X
we can define a representation of π1(X, p):

ρ : π1(X, p)→ Aut(Vp) ∼= Gl(n,C).

We call ρ(π1(X, p)) ⊆ Gl(n,C) the monodromy of V.

We say that the monodromy is irreducible (resp. reducible) if ρ is irreducible

(resp reducible) as representation.

3.2. Local systems over P1

Let S := {s1, ..., sn} be a set of n points of P1 and L a local system on rank

one over P1 \ S. Fix a point q ∈ P1 \ S, then we can take n loops γ1, ..., γn, where

each γi surrounds only one the point si of S, such that:

π1(P1 \ S, q) = 〈γ1, ...., γn | γ1 ∗ γ2 ∗ ... ∗ γN = I〉.

where I is the constant loop.

Each loop γi surrounds only one point of S, si and we call αi := ρ(γi). Without

loss of generality [23] we can take the αi such that |αi| = 1 and in particular we

can write

αi = exp(2iπµi)

where µi ∈ [0, 1) for i = 1, ..., n is call the local monodromy of L around si.

These local systems support a cohomology theory, which for our purposes we

collect in this statement (see [23] for details):

Theorem 3.1 (Local system cohomology over P1). Let P1 \ S as above, and

L a local system of rank one over it. Suppose there exist an least one µi 6= 0, then

it holds:

H1(P1 \ S,L) = H(1,0)(P1 \ S,L)⊕H(0,1)(P1 \ S,L)

dimH1(P1 \ S,L) = n− 2

dimH(1,0)(P1 \ S,L) = −1 +
n∑
i=1

µi

where µi are the local monodromies of L.
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3.3. A family of curves with (g, uf , cf ) = (6, 2, 2)

We construct our fibred surface following the article of Catanese and Det-

tweiler [17]. Our fibration will have smooth fibers which are the normalizations

of the family of plane curves parametrized by t ∈ C \ {0, 1} described by the

equation:

(3.3.1) z7 = y0y1(y0 − y1)2(y1 − ty0)3,

with [y0, y1, z] ∈ P2. We give a sketch of the construction. Starting from equation

3.3.1 we homogenize it as follows:

(3.3.2) z7 = y0y1(y0 − y1)2(y1t0 − t1y0)3t40,

where ([y0, y1], [x0, x1]) ∈ P1×P1 and z is a section of OP1×P1(1, 1). This equation

(3.3.2) defines a (singular) cyclic covering of P1 × P1 with group Z/7Z.

π : Σ→ P1 × P1

The composition of π with the first projection p1 : P1 × P1 → P1 is a singular

family of singular curves over P1. We now perform as follows:

Let B be the normalization of D

B
α→ D

β→ P1

ρ̃ := α ◦ β is a degree 7 morphism.

We now consider the fibred product Σ×P1 B induced by ρ̃ and π and let S be

its normalization as described in the diagram below.

S //

f
##

Σ×P1 B

��

// Σ

��

B
ρ̃

// P1

Catanese and Dettweiler have proven the following results:

Proposition 3.3.3 ([17] prop 4.1). The surface S is smooth.

Theorem 3.2 ([17] prop 4.2). Given the morphism f : S → B it holds:

(i) for every fiber g = g(F ) = 6;

(ii) the genus of the base curve b = g(B) = 3;

(iii) every fiber is smooth except for the three over the points of B corre-

sponding to t = 0, 1,∞; the singular fibers consist of two smooth curves

of genus 3 intersecting trasversely;

(iv) f is an Albanese map, i.e. qf = 0.
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3.4. Monodromy and local systems

Let f : S → B our family of curves given above and consider the local system

V := R1f∗C. This sheaf is also a local system over B and the vector bundle

V := V⊗OB is the direct sum of the Hodge bundle and its complex coniugate:

V = f∗ωf ⊕ ¯f∗ωf .

Since every fiber (smooth or not) defines a cyclic cover of P1, the Galois covering

group G = Z/7Z acts of V (hence also on the subbundle f∗ωf ), which decomposes

as direct sum of eigenspaces

V = ⊕6
j=1Vj H = ⊕6

j=1Hj

where in each eigenspace Vj (respectively Hj). G acts by multiply by the char-

acter χj.

We note that the stalks of any local subsystem Vj, are the eigenspaces of the

first cohomology group of the fibers with character χj. We can thus calculate its

rank as follows ([17])

rkVj = dimH1(Cλ,C)j = dimH1(P1 \ S,Lj) = |S| − 2 = 2.

We also have this result about the monodromy of these local subsystems:

Lemma 3.1 (irreducibility and non-finiteness of monodromy ([17])). With the

notation given above, each local subsystem Vj has a monodromy representation

of π1(B, b0) which is:

(a) irreducible;

(b) not finite, i.e. the image of ρj : π1(B, b0) → Aut(Vjb0) has infinite

cardinality.

3.5. Clifford index and unitary rank of the family

Now we want to calculate the invariants of our fibration:

Proposition 3.5.1 (Clifford index of the family). Let f : S → B be the

fibration constructed in 3.3. the fibration is tetragonal and cf = 2.

Proof. The smooth fibers Cλ of f : S → B have an affine plane model with

equation:

y7 = x(x− 1)2(x− λ)3, λ ∈ C \ {0, 1}.
Since these curves have genus 6, their gonality γ(Cλ) is at most bg+3

2
c = 4.

Using the criterions of 1.7, 1.8 we exclude γ(Cλ) = 2, 3, so Cλ is necessarily

tetragonal.
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The Clifford index cf = Cliff(Cλ) for λ general is therefore either 2 or 1 in

case Cλ has a g2
5. We want to exclude this last case: observe that Cλ has an

automorphism of order 7 while for a plane curve of degree 5 the order of any

cyclic subgroup of the automorphism has to divide one of the following integers

4, 5, 10, 16, 15, 20

by [4], corollary 8.

�

Proposition 3.5.2 (Unitary rank of the family). Let f : S → B be the

fibration constructed in 3.3. Then unitary rank uf is 2.

Proof. Let us consider again the decomposition of the Hodge bundle in

eigenspaces of G = Z/7Z:

f∗ωf =
⊕
j∈Z/7Z

Hj.

Thanks to the Chevalley-Weil formula (1.6), we can compute the rank of every

subbundle:

(3.5.3) rkHj = dimH0(Cx, ωCx)j =


0 if i = 0, 6;

1 if i = 2, 3, 4, 5;

2 if i = 1

Any of the four line bundles H2,H3,H4,H5 must be a summund of A in the

second Fujita decomposition f∗ωf = A⊕U . Indeed, if this was not the case each

Hj with j = 2, 3, 4, 5 would be a flat line bundle, and also H̄−j would be flat,

since Vj ⊗ OB = Hj ⊕ H̄−j is flat too. So the monodromy representation of Vj
would be reducible, against Theorem 3.1. Now the summand H1 has rank 2 and

it is a subbundle of V1 ⊗OB so it coincides with this latter one and its therefore

unitary flat.

�

Remark 3.5.4. To complete our analysis we calculate the slope λf := K2
f/χf

of this family of curves.

By construction S is a cyclic cover of degree 7 of a ruled surfaces P1 × P1

blown up at three points, i.e. S is a cover of the del pezzo surface Z :=

Blowp1,p2,p3(P1 × P1). This cover is ramified over B, with monodromy group

Z/7Z for any component of B, so:

K2
S = (7KP + 6B)2.

Called L1, L1 the total trasform of the hyperplane divisors of P1 × P1, on Z,

and E1, E2, E3 the exceptional divisors,
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KZ = −2L1 − 2L2 + E1 + E2 + E3;

B = 4L1 + 4L2 − 2(E1 + E2 + E3).

After a bit of calculation we conclude that K2
S = 125. Recalling the formula

2.1:

K2
f = K2

S − 8(b− 1)(g − 1) = 45

Since the family as only three singular fibers, and anyone of these have a single

nodal point, we conclude that ef = 3, and from Noether relation 2.1.7:

χf =
K2
f + ef

12
=

48

12
= 4.

Then the slope of f : S → B is

λf := K2
f/χf =

45

4
= 11, 25.



CHAPTER 4

Fibred threefolds

4.1. Preliminaries on fibred threefolds

In this chapter we follow what has been done in [6].

Preliminarly we recall some taxonomy of algebraic varieties.

Every algebraic variety in what follows is supposed to be normal.

Let X be an algebraic variety of dimension n, we call W(X) and Div(X)

respectively the Weil group and the Cartier group of divisors of X [37].

Remark 4.1.1. For a non smooth variety X of dimension n, we call X0 ⊂ X

the smooth locus, i.e. the complementary subset in X of the singular locus Xsing,

which has codimension at least 2.

The Weil canonical divisor KX is defined as the closure in X of the divisor

associated to the canonical bundle Ωn
X0

of X0.

The canonical divisor has an important role in classification of algebraic vari-

eties, indeed we define:

Definition 4.1.2 (Q-factorial, Q-Gorenstein variety). An algebraic variety

X is called Q-factorial, if W(X)⊗Q = Div(X)⊗Q, i.e. for every Weil divisor D,

it exists a couple of intergers m,n such that nD = mZ, with Z a Cartier divisor.

In particular X is called Q-Gorestein if the canonical Weil divisor KX has a

multiple rKV which is a Cartier divisor.

A Q-Gorestein variety X has terminal (canonical) singularities if there exists a

resolution of singularities f : Y → X such that

rKY = f ∗(rKX) +
∑
i

aiEi

with ai > 0 (ai ≥ 0) and Ei f -exceptional divisors.

Now we want focus on varieties of dimension three i.e. threefolds, which we

want see as families of surfaces, so we introduce the notion:

Definition 4.1.3 (Fibred threefold). A fibred threefold f : Σ → B is given

by a triple (Σ, B, f) where:

39
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• Σ is a Q−factorial threefold with only terminal singularities;

• B a smooth projective curve of genus g(B) := b called base curve;

• f : Σ → B a proper surjective morphism with connected fibers, such

that the general fiber is a minimal surface of general type.

Remark 4.1.4. Suppose that a fibred threefold Σ is Q-factorial, and any

general fiber F is a surface of general type. Let pg := h2(F,OF ) the geometric

genus of F , then:

• the relative canonical sheaf ωf := ωΣ ⊗ f ∗ωB is a nef Q−line bundle;

• the Hodge bundle f∗ωf is a nef vector bundle over B, of rank pg.

We remind that ([30],[31]) for every fibration f : X → B over a smooth

curve, the Hodge bundle satisfies the two Fujita’s decompositions. So for a fibred

threefold we define:

Definition 4.1.5. Let f : Σ → B be a fibred threefold, and f∗ωf = A ⊕ U
its Hodge bundle. We call uf := rkU , the unitary rank of f .

Every fibred threefold, posseses a set of relative numerical invariants:

• K3
f = K3

T − 2(b− 1)K2
F

• ∆f := deg f∗O(Kf )

• χf := χFχB − χΣ

We stress that unlike what happens in the case of fibred surfaces χf is not

equal to ∆f , instead it holds:

Proposition 4.1.6 ([6] Lemma 5.6 ). Let f : Σ→ B be a fibreed threefold,

then if χf ≥ 0 it holds:

χf ≤ ∆f .

Proof. Using the Leray spectral sequence we can state:

χf = deg f!ωf .

Now by definition of f!ωf , since the fibers are surfaces:

deg f!ωf =
∑
i≥0

(−1)i degRif∗ωf = deg f∗ωf − degR1f∗ωf + degR2f∗ωf ,

and from relative duality

R2f∗ωf ' (f∗OΣ)∨ ' (OB)∨ ' OB.

Then

(4.1.7) χf = deg f∗ωf − degR1f∗ωf .
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Now we recall that ([6], prop 3.1 ) R1f∗ωf is a nef vector bundle, hence has

non-negative degree, so

(4.1.8) χf ≤ ∆f

as we wanted. �

Remark 4.1.9. Since χf 6= ∆f we can define two distincted slopes λ1
f , λ

2
f :

λ1
f :=

K3
f

χf
λ2
f :=

K3
f

∆f

The first one λ1
f , gives us more information regarding the fibers than λ2

f , nonethe-

less λ2
f is the natural quantity estimated by the Xiao-Konno-Ohno Formula (4.1).

Although we are lucky and proposition 4.1.6, tell us that:

λ1
f ≥ λ2

f

so every inequality of the form

(4.1.10) λ2
f ≥ A

is also an inequality of the same form for λ1
f . In particular an inequality in the

form (4.1.10) is called a slope inequality.

Remark 4.1.11. Unlike the case of fibred surfaces, there is not an analogous

Noether relation for fibred threefolds since the Groethendieck-Riemann-Roch for-

mula 2.2.7 gives only a trivial relation for the relative invariants. So we must study

separately the sign of every invariant.

Remark 4.1.12. We remark that in general χf is not non-negative, so it is

useful have some criteria for the non negativity of this invariant.

Proposition 4.1.13 (Non-negativity criteria ([6])). Let f : Σ → B be a

fibred threefold, call Âlb the Albanese map of Σ

Âlb : Σ→ Alb .

Set a := dim im(Alb(Σ)), then χf ≥ 0 if holds one on these:

• b ≤ 1 and χ(OΣ) ≤ 0;

• a = 2 and h0(S, ωΣ|B) 6= 0;

• a = 3 and all the special fibers are reduced;

• a = 3 and the general fiber is a surface of general type.

Remark 4.1.14. Differently from χf , ∆f has a behaviour similar to the case

of fibred surfaces, indeed we can state:
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Proposition 4.1.15 (isotrivial criteria [6]). Let f : Σ → B be a fibred

threefold. If ∆f = 0 and the canonical system |KF | of the general fiber F , defines

a birational map, then f is isotrivial.

4.2. Xiao-Ohno-Konno formula for fibred threefolds

We can exibit an analogous formula for the (top) auto-intersection of divisors.

In particular we can give a lower estimate of K3
f which depends only on the Hodge

bundle and linear systems over the general fiber F .

We recall briefly the main characters of this section. Let f : Σ → B be a

fibred threefold and f∗Kf be its Hodge bundle.

Given any subbundle G ⊂ f∗Kf we define:

• ZG as the only effetive divisor on Σ such that the second map in the

sequence

f ∗G → OΣ(Kf )→ OΣ(Kf − ZG)

is generically surjective;

• M̂G := Kf − ZG called the moving part of G and MG := M̂G.F ;

• NG := MG − µGF , where µG is the last slope of G.

Moreover from Miyaoka-Nakayama Lemma 2.3, as long as µG ≥ 0, the divisor

NG is nef.

Theorem 4.1 (Xiao-Ohno-Konno Formula). Given a fibred threefold f : Σ→
B, let Kf its relative canonical divisor and f∗Kf its Hodge bundle. If the Hodge

bundle is nef and its Harder-Narashiman filtration is:

0 ( E1 ( E2 ( ... ( El−1 ( El = f∗Kf

with slope µ1 > µ2 > ... > µl ≥ µl+1 := 0, call Mi := MEi and m ∈ {1, 2, ..., l}
the smaller index such that the map induced by the linear system |Mm| over the

general fiber F has dimension 2.

Let J := {i1, ..., ip, ..., ik} ⊆ {1, ..., k} be any subset of indexes, with ip the

lowest index, such that ip ≥ m .

Then it holds the inequality:

K3
f ≥

k∑
i=p

(µi − µi+1)((M2
i+1 +Mi+1Mk +M2

i )+

p−1∑
j=1

((µj − µj+1)Mp(Mj +Mj+1).

where the summation is performed over the set of indexes J .
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Proof. Let Nj := NEij for any j = 1, ..., k and fix Nk+1 := Kf .

Then we can write:

K3
f = N3

k+1 −N3
k +N3

k

= (Nk+1 −Nk)(N
2
k+1 +Nk+1Nk +N2

k ) +N3
k

≥ (µk − µk+1)(N2
k+1 +Nk+1Nl +N2

k ).F +N3
k

≥ (µk − µk+1)(M2
k+1 +Mk+1Mk +M2

k ) +N3
k −N3

k−1 +N3
k−1

≥
k∑

i=m

(µi − µi+1)((M2
i+1 +Mi+1Mi +M2

i ) +N3
m

≥
k∑

i=m

(µi − µi+1)((M2
i+1 +Mi+1Mi +M2

i ) +Nm(N2
m −N2

m−1 +N2
m−1)

≥
k∑

i=m

(µi − µi+1)((M2
i+1 +Mi+1Mi +M2

i ) +Nm((Nm −Nm−1)(Nm +Nm−1) +N2
m−1)

≥
k∑

i=m

(µi − µi+1)((M2
i+1 +Mi+1Mi +M2

i ) +Nm.F.((µm−1 − µm)(M̂m + ˆMm−1) + ..)

≥
k∑

i=m

(µi − µi+1)((M2
i+1 +Mi+1Mi +M2

i ) +
m−1∑
j=1

Mm.((µj − µj+1)(Mj +Mj+1)

as wanted.

�

4.3. Slope inequalities

Now given the the Xiao-Konno-Ohno method we can state new slope inequal-

ities for fibred threefolds, which holds under some (restrictive) conditions for the

Hodge bundle.

We remark that in this section we put λ2
f := λf .

Remark 4.3.1. In what follows we use the notation:

Given a linear system |M | on a surface F , of dimension k, we say that:

• |M | is g.f.n.d. if induces a generically finite map φ|M | : F → Pk which

is not a double cover on the image φ|M |(F ) where φ|M |(F ) is a ruled

surface;

• |M | is g.f.d. if induces a generically finite map φ|M | : F → Pk which is

a double cover on the image φ|M |(F ) and φ|M |(F ) is a ruled surface and

call q := h1(φ|M |(F )).



4.3. SLOPE INEQUALITIES 44

• |M | induces a fibration of gonality γ, if the map φ|M | : F → Pk is a

fibration on F which general (smooth) fiber C has gonality γ.

Theorem 4.2 (Slope threefold ample part semistable). Let f : Σ → B be a

fibred threefold, f∗ωf = A⊕ U its Hodge bundle where the ample summand A is

semistable. Let pg := H0(F, ωF ) ≥ 3.

If rkA ≥ 2 and |KF | is g.f.n.d. it holds:

Ia λf ≥ 9 +
3uf−20

pg−uf
if |MA| is g.f.n.d.;

Ib λf ≥ 7 +
3uf+4q−14

pg−uf
if |MA| is f.g.d.

Ic λf ≥ 8 +
3uf−12

pg−uf
if |MA| induces a fibration of gonality γ ≥ 5;

Id λf ≥ 7 +
3uf−11

pg−uf
if |MA| induces a fibration of gonality γ ≥ 4;

Ie λf ≥ 5 +
3uf−10

pg−uf
if |MA| induces a fibration of gonality γ ≥ 3;

If λf ≥ 5 +
3uf−9

pg−uf
if |MA| induces a fibration.

If rkA ≥ 2 and |KF | is g.f.d. it holds:

IIa λf ≥ 6 +
2uf+6q−11

pg−uf
if |MA| is g.f.d.

IIb λf ≥ 7 +
2uf+2q−9

pg−uf
if |MA| induces a fibration of gonality γ ≥ 5

IIc λf ≥ 6 +
2uf+2q−8

pg−uf
if |MA| induces a fibration of gonality γ ≥ 4

IId λf ≥ 5 +
2uf+2q−8

pg−uf
if |MA| induces a fibration of gonality γ ≥ 3

IIe λf ≥ 4 +
2uf+2q−7

pg−uf
if |MA| induces a fibration.

If rkA ≥ 2 and |KF | induces a fibration of gonality γ, it holds:

IIIa λf ≥ 10 + 5
uf−2

pg−uf
if γ ≥ 5;

IIIb λf ≥ 8 + 4
uf−2

pg−uf
if γ ≥ 4;

IIIc λf ≥ 6 + 3
uf−2

pg−uf
if γ ≥ 3;

IIId λf ≥ 4 + 2
uf−2

pg−uf
if γ ≥ 2;

Otherwise if A is a line bundle it holds:

λf ≥ K2
F .

Proof. Since A is semistable, the Harder-Narashiman filtration of f∗ωf is:

0  A  f∗ωf ,

where µ1 = µA = deg f∗ωf/ rkA and µ2 = µf∗ωf
= µ(U) = 0.

Now suppose that the map φ|A| : F → PrkA−1 induced by |MA| is generically

finite.
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Appling the Xiao-Ohno-Konno formula 4.1, for the set of indexes {1, 2, 3} we

get:

K3
f ≥ (µ1 − µ2)(M2

1 +M1M2 +M2
2 ) + (µ2 − µ3)(M2

2 +M2M3 +M2
3 )

= µ1(M2
1 +M1M2 +M2

2 ).

Since |MA| is generically finite also |KF | is. Furthemore suppose that this

latter is g.f.n.d.

If we suppose that φ|A| is g.f.n.d., then quoting ([6], Lemma 5.9) :

K3
f ≥ µ1(3(pg − uf )− 7 + 3(pg − uf )− 6 + 3pg − 7)

= deg f∗Kf
(9(pg − uf )− 20 + 3uf )

pg − uf

= deg f∗Kf (9 +
3uf − 20

pg − uf
).

Otherwise if φ|A| is g.f.d., from the same lemma we have:

K3
f ≥ µ1(2(pg − uf )− 4 + 2q + 2(pg − uf )− 3 + 2q + 3pg − 7)

= deg f∗O(Kf )
(7(pg − uf )− 14 + 3uf + 4q)

pg − uf

= deg f∗OΣ(Kf )(7 +
3uf + 4q − 14

pg − uf
).

Now supposing that the map φA : F → PrkA−1 is a fibration, then the Xiao-

Ohno-Konno formula (4.1) tell us that:

K3
f ≥ (µ1 − µ2)KF (M1 +M2) + (µ2 − µ3)KF (M2 +KF )

= µ1KF (M1 +M2)

Now if |KF | induces a generic finite map also |M2|, which is the mobile part

of |KF |, does the same. So thanks to ([6] Lemma 5.9) we write:

KFM2 ≥M2
2 ≥ 3pg − 7. if |KF | is g.f.n.d.;

KFM2 ≥M2
2 ≥ 2pg − 4 + 2q(S) if |KF | is g.f.d.

If we suppose that the general fiber C of φ|A| has gonality gon(C) ≥ 5, then

by ([6] Lemma 5.9 )
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K3
f ≥ deg f∗OΣ(Kf )

(5(pg − uf − 1) + 3pg − 7)

pg − uf

= deg f∗OΣ(Kf )(8 +
3uf − 12

pg − uf
).

K3
f ≥ deg f∗OΣ(Kf )

(5(pg − uf − 1) + 2pg − 4 + 2q)

pg − uf

= deg f∗OΣ(Kf )(7 +
2uf + 2q − 9

pg − uf
).

Similarly for the other gonalities we get:

K3
f ≥ deg f∗OΣ(Kf )(7 +

3uf − 11

pg − uf
) if gon(C) ≥ 4 and |KF | is a g.f.n.d.;

K3
f ≥ deg f∗OΣ(Kf )(6 +

2uf + 2q − 8

pg − uf
) if gon(C) ≥ 4 and |KF | is a g.f.d.;

K3
f ≥ deg f∗OΣ(Kf )(6 +

3uf − 10

pg − uf
) if gon(C) ≥ 3 and |KF | is a g.f.n.d.;

K3
f ≥ deg f∗OΣ(Kf )(5 +

2uf + 2q − 7

pg − uf
) if gon(C) ≥ 4 and |KF | is a g.f.d.;

K3
f ≥ deg f∗OΣ(Kf )(5 +

3uf − 9

pg − uf
) for every C and |KF | is a g.f.n.d.;

K3
f ≥ deg f∗OΣ(Kf )(4 +

2uf + 2q − 6

pg − uf
) if |KF | is a g.f.n.d.;

Now suppose that |Kf | is g.f.d., then similarly at what see above it holds:

IIa λf ≥ 6 +
2uf+6q−11

pg−uf
if |MA| is g.f.d.

IIb λf ≥ 7 +
2uf+2q−9

pg−uf
if |MA| induces a fibration of gonality γ ≥ 5

IIc λf ≥ 6 +
2uf+2q−8

pg−uf
if |MA| induces a fibration of gonality γ ≥ 4

IId λf ≥ 5 +
2uf+2q−8

pg−uf
if |MA| induces a fibration of gonality γ ≥ 3

IIe λf ≥ 4 +
2uf+2q−7

pg−uf
if |MA| induces a fibration.

If |Kf | (hence also |M2|) induces a fibration of gonality γ ≥ 2, then the same

does φ|A| (see [6] thm 5.9 proof). So similarly to what does above we have:
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K3
f ≥ deg f∗OΣ(Kf )(10 + 5

uf − 2

pg − uf
) if γ ≥ 4;

K3
f ≥ deg f∗OΣ(Kf )(8 + 4

uf − 2

pg − uf
) if γ ≥ 3;

K3
f ≥ deg f∗OΣ(Kf )(6 + 4

uf − 2

pg − uf
) if γ ≥ 2.

Now suppose that rkA = 1. Thanks to theorem 2.3 we can say that Kf−µAF
is nef and Kf − µ2F is pseudo-effective, so the intersection is non negative:

K2
f (Kf − µ1F ) ≥ 0.

Rearranging the terms, we get

K3
f ≥ µ1K

2
F = deg f∗OΣ(Kf )K

2
F ,

as wanted. �

We now use the above inequalities to estimate uf . In particular we give an

upper bound for uf which depends only on pg. We recall this result of Ohno,

which in our case can be stated as:

Theorem 4.3 ( [51]). Let f : Σ→ B be a fibred threefold, then it holds:

K3
f − 2(b− 1)K2

F ≤ 72χf ,

In particular if the genus of the base curve b = 0, 1 the above theorem tell us

that:

λf = K3
f/χf ≤ 72.

So substituing the variuos expressions for λf in theorem 4.2 we get:

Proposition 4.3.2 (Upper bound for uf ). Let f : Σ→ B be a fibred three-

fold with b = 0, 1 and pg the geometric genus of the general fiber F . Suppose

that the ample summand A of the Hodge bundle is semistable. Then we have the

following bounds for uf :

(Ia) If |KF | and |MA| are g.f.n.d.:

uf ≤
63pg + 20

66
.

(Ib) If |KF | is g.f.n.d. and |MA| is g.f.d:

uf ≤
65pg − 4q + 14

68
.
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(Ic) If |KF | is g.f.n.d. and |MA| defines a fibration of gonality γ ≥ 5:

uf ≤
64pg + 12

67
.

(Id) If |KF | is g.f.n.d. and |MA| defines a fibration of gonality γ ≥ 4:

uf ≤
65pg + 11

68
.

(Ie) If |KF | is g.f.n.d. and |MA| defines a fibration of gonality γ ≥ 3:

uf ≤
67pg + 10

70
.

(If) If |KF | is g.f.n.d. and |MA| defines a fibration of gonality γ ≥ 2:

uf ≤
67pg + 9

70
.

(IIa) If |KF | and |MA| are g.f.n.d.:

uf ≤
66pg − 6q + 11

68
.

(IIb) If |KF | is g.f.d. and |MA| defines a fibration of gonality γ ≥ 5:

uf ≤
65pg − 2q + 9

67
.

(IIc) If |KF | is g.f.d. and |MA| defines a fibration of gonality γ ≥ 4:

uf ≤
66pg − 2q + 8

68
.

(IId) If |KF | is g.f.n. and |MA| defines a fibration of gonality γ ≥ 3:

uf ≤
67pg − 2q + 8

69
.

(IIe) If |KF | is g.f.d. and |MA| defines a fibration of gonality γ ≥ 2:

uf ≤
68pg − 2q + 7

70
.

(IIIa) If |KF | defines a fibration of gonality γ ≥ 5:

uf ≤
62pg + 124

67
.

(IIIb) If |KF | defines a fibration of gonality γ ≥ 4:

uf ≤
16pg + 2

17
.

(IIIc) If |KF | defines a fibration of gonality γ ≥ 3:

uf ≤
22pg + 2

23
.
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(IIId) If |KF | defines a fibration of gonality γ ≥ 2:

uf ≤
34pg + 2

35
.
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