BACKGROUND: Although heart failure (HF) is one of the most common conditions affecting the heart, little attention has been placed on the role of arteries in contributing to the progression of this disease. We sought to determine the hemodynamic change of arteries in HF patients subdivided according to left ventricular ejection fraction. The major goal was to establish the active compensatory role of arteries in HF. METHODS: Using sphygmography, we systematically studied a cohort of 228 HF patients and 52 healthy controls. We focused on the common carotid as the main elastic artery and the posterior tibial as the main muscular artery. Moreover, we categorized the three HF groups, HFrEF, HFmrEF, HFpEF, into two subgroups (A and B) according to the presence or absence of HF signs at baseline. RESULTS: We discovered that all the parameters of measured arterial kinetics, i.e., work, power, acceleration, and speed, were significantly increased (P<0.001 by one-way ANOVA) in the groups without HF signs. In contrast, all the arterial kinetics parameters were significantly reduced (P<0.001) in the groups exhibiting HF signs. Similar results were obtained in both types of arteries and were consistently observed across all the three different types of HF, although with some differences in magnitude. Finally, we discovered that HFpEF patients exhibited more compromised arterial function vis-à-vis HFrEF patients. CONCLUSIONS: We provide the first documentation of an active compensatory role of arteries during HF. Mechanistically, we explain these findings by a dual activity of large arteries accomplished via an active propulsive work and a concurrent hemodynamic suction. These underestimated arterial functions partially compensate for the heart dysfunction in HF, underlining a key interplay between the heart and the vessels. We propose a new paradigm that we define as "heart and vessels failure" that explicitly focuses on both heart and vessels' interaction during the progression of HF.

Galati, G., Germanova, O., Iozzo, R., Buraschi, S., Shchukin, Y., Germanov, A., et al. (2022). Hemodynamic arterial changes in heart failure: a proposed new paradigm of "Heart and Vessels Failure". MINERVA CARDIOLOGY AND ANGIOLOGY, 70(3), 310-320 [10.23736/S2724-5683.21.05786-0].

Hemodynamic arterial changes in heart failure: a proposed new paradigm of "Heart and Vessels Failure"

Senni M;
2022

Abstract

BACKGROUND: Although heart failure (HF) is one of the most common conditions affecting the heart, little attention has been placed on the role of arteries in contributing to the progression of this disease. We sought to determine the hemodynamic change of arteries in HF patients subdivided according to left ventricular ejection fraction. The major goal was to establish the active compensatory role of arteries in HF. METHODS: Using sphygmography, we systematically studied a cohort of 228 HF patients and 52 healthy controls. We focused on the common carotid as the main elastic artery and the posterior tibial as the main muscular artery. Moreover, we categorized the three HF groups, HFrEF, HFmrEF, HFpEF, into two subgroups (A and B) according to the presence or absence of HF signs at baseline. RESULTS: We discovered that all the parameters of measured arterial kinetics, i.e., work, power, acceleration, and speed, were significantly increased (P<0.001 by one-way ANOVA) in the groups without HF signs. In contrast, all the arterial kinetics parameters were significantly reduced (P<0.001) in the groups exhibiting HF signs. Similar results were obtained in both types of arteries and were consistently observed across all the three different types of HF, although with some differences in magnitude. Finally, we discovered that HFpEF patients exhibited more compromised arterial function vis-à-vis HFrEF patients. CONCLUSIONS: We provide the first documentation of an active compensatory role of arteries during HF. Mechanistically, we explain these findings by a dual activity of large arteries accomplished via an active propulsive work and a concurrent hemodynamic suction. These underestimated arterial functions partially compensate for the heart dysfunction in HF, underlining a key interplay between the heart and the vessels. We propose a new paradigm that we define as "heart and vessels failure" that explicitly focuses on both heart and vessels' interaction during the progression of HF.
Articolo in rivista - Articolo scientifico
Arteries; Blood vessels; Heart failure; Hemodynamics;
English
8-giu-2021
2022
70
3
310
320
none
Galati, G., Germanova, O., Iozzo, R., Buraschi, S., Shchukin, Y., Germanov, A., et al. (2022). Hemodynamic arterial changes in heart failure: a proposed new paradigm of "Heart and Vessels Failure". MINERVA CARDIOLOGY AND ANGIOLOGY, 70(3), 310-320 [10.23736/S2724-5683.21.05786-0].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/373156
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
Social impact