Introduction: Amyloid-related imaging abnormalities with edema/effusion (ARIA-E) are commonly observed with anti-amyloid therapies in Alzheimer’s disease. We developed a semi-mechanistic, in silico model to understand the time course of ARIA-E and its dose dependency. Methods: Dynamic and statistical analyses of data from 112 individuals that experienced ARIA-E in the open-label extension of SCarlet RoAD (a study of gantenerumab in participants with prodromal Alzheimer’s disease) and Marguerite RoAD (as study of Gantenerumab in participants with mild Alzheimer’s disease) studies were used for model building. Gantenerumab pharmacokinetics, local amyloid removal, disturbance and repair of the vascular wall, and ARIA-E magnitude were represented in the novel vascular wall disturbance (VWD) model of ARIA-E. Results: The modeled individual-level profiles provided a good representation of the observed pharmacokinetics and time course of ARIA-E magnitude. ARIA-E dynamics were shown to depend on the interplay between drug-mediated amyloid removal and intrinsic vascular repair processes. Discussion: Upon further refinement and validation, the VWD model could inform strategies for dosing and ARIA monitoring in individuals with an ARIA-E history.

Aldea, R., Peter Grimm, H., Gieschke, R., Hofmann, C., Lott, D., Bullain, S., et al. (2022). In silico exploration of amyloid-related imaging abnormalities in the gantenerumab open-label extension trials using a semi-mechanistic model. ALZHEIMER'S & DEMENTIA. TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 8(1) [10.1002/trc2.12306].

In silico exploration of amyloid-related imaging abnormalities in the gantenerumab open-label extension trials using a semi-mechanistic model

Fabrizio Piazza;
2022

Abstract

Introduction: Amyloid-related imaging abnormalities with edema/effusion (ARIA-E) are commonly observed with anti-amyloid therapies in Alzheimer’s disease. We developed a semi-mechanistic, in silico model to understand the time course of ARIA-E and its dose dependency. Methods: Dynamic and statistical analyses of data from 112 individuals that experienced ARIA-E in the open-label extension of SCarlet RoAD (a study of gantenerumab in participants with prodromal Alzheimer’s disease) and Marguerite RoAD (as study of Gantenerumab in participants with mild Alzheimer’s disease) studies were used for model building. Gantenerumab pharmacokinetics, local amyloid removal, disturbance and repair of the vascular wall, and ARIA-E magnitude were represented in the novel vascular wall disturbance (VWD) model of ARIA-E. Results: The modeled individual-level profiles provided a good representation of the observed pharmacokinetics and time course of ARIA-E magnitude. ARIA-E dynamics were shown to depend on the interplay between drug-mediated amyloid removal and intrinsic vascular repair processes. Discussion: Upon further refinement and validation, the VWD model could inform strategies for dosing and ARIA monitoring in individuals with an ARIA-E history.
Articolo in rivista - Articolo scientifico
Alzheimer’s disease; amyloid beta; amyloid-related imaging abnormalities; gantenerumab; in silico; modeling; pathophysiology; semi-mechanistic; vascular wall disturbance;
English
Aldea, R., Peter Grimm, H., Gieschke, R., Hofmann, C., Lott, D., Bullain, S., et al. (2022). In silico exploration of amyloid-related imaging abnormalities in the gantenerumab open-label extension trials using a semi-mechanistic model. ALZHEIMER'S & DEMENTIA. TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 8(1) [10.1002/trc2.12306].
Aldea, R; Peter Grimm, H; Gieschke, R; Hofmann, C; Lott, D; Bullain, S; Delmar, P; Klein, G; Lyons, M; Piazza, F; Carare, R; Mazer, N
File in questo prodotto:
File Dimensione Formato  
A D Transl Res Clin Interv - 2022 - Aldea - In silico exploration of amyloid‐related imaging abnormalities in the.pdf

accesso aperto

Descrizione: Full article
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/370742
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact