Wireless body area networks (WBANs) are becoming increasingly popular as they allow individuals to continuously monitor their vitals and physiological parameters remotely from the hospital. With the spread of the SARS-CoV-2 pandemic, the availability of portable pulse-oximeters and wearable heart rate detectors has boomed in the market. At the same time, in 2020 we assisted to an unprecedented increase of healthcare breaches, revealing the extreme vulnerability of the current generation of WBANs. Therefore, the development of new security protocols to ensure data protection, authentication, integrity and privacy within WBANs are highly needed. Here, we targeted a WBAN collecting ECG signals from different sensor nodes on the individual's body, we extracted the inter-pulse interval (i.e., R-R interval) sequence from each of them, and we developed a new information theoretic key agreement protocol that exploits the inherent randomness of ECG to ensure authentication between sensor pairs within the WBAN. After proper pre-processing, we provide an analytical solution that ensures robust authentication; we provide a unique information reconciliation matrix, which gives good performance for all ECG sensor pairs; and we can show that a relationship between information reconciliation and privacy amplification matrices can be found. Finally, we show the trade-off between the level of security, in terms of key generation rate, and the complexity of the error correction scheme implemented in the system.

Guglielmi, A., Muraro, A., Cisotto, G., Laurenti, N. (2021). Information Theoretic Key Agreement Protocol based on ECG signals. In 2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings (pp.1-6). Institute of Electrical and Electronics Engineers Inc. [10.1109/GLOBECOM46510.2021.9685523].

Information Theoretic Key Agreement Protocol based on ECG signals

Cisotto G.;
2021

Abstract

Wireless body area networks (WBANs) are becoming increasingly popular as they allow individuals to continuously monitor their vitals and physiological parameters remotely from the hospital. With the spread of the SARS-CoV-2 pandemic, the availability of portable pulse-oximeters and wearable heart rate detectors has boomed in the market. At the same time, in 2020 we assisted to an unprecedented increase of healthcare breaches, revealing the extreme vulnerability of the current generation of WBANs. Therefore, the development of new security protocols to ensure data protection, authentication, integrity and privacy within WBANs are highly needed. Here, we targeted a WBAN collecting ECG signals from different sensor nodes on the individual's body, we extracted the inter-pulse interval (i.e., R-R interval) sequence from each of them, and we developed a new information theoretic key agreement protocol that exploits the inherent randomness of ECG to ensure authentication between sensor pairs within the WBAN. After proper pre-processing, we provide an analytical solution that ensures robust authentication; we provide a unique information reconciliation matrix, which gives good performance for all ECG sensor pairs; and we can show that a relationship between information reconciliation and privacy amplification matrices can be found. Finally, we show the trade-off between the level of security, in terms of key generation rate, and the complexity of the error correction scheme implemented in the system.
slide + paper
biometrics; ECG; information theory; IPI; Key agreement; wireless body area networks;
English
2021 IEEE Global Communications Conference, GLOBECOM 2021 - 7 December 2021 through 11 December 2021
2021
2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings
9781728181042
2021
1
6
reserved
Guglielmi, A., Muraro, A., Cisotto, G., Laurenti, N. (2021). Information Theoretic Key Agreement Protocol based on ECG signals. In 2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedings (pp.1-6). Institute of Electrical and Electronics Engineers Inc. [10.1109/GLOBECOM46510.2021.9685523].
File in questo prodotto:
File Dimensione Formato  
Guglielmi-2021-GLOBECOM-VoR.pdf

Solo gestori archivio

Descrizione: Intervento a convegno
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 320.25 kB
Formato Adobe PDF
320.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/370042
Citazioni
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
Social impact