Splanchnic ischemia is associated with increased bacterial translocation, but previous observations showed that translocation of Candida albicans did not occur uniformly among individual intestinal villi. This study was performed to investigate the relationship between the degree of Candida translocation and the microcirculation of individual villi. Thiry-Vella intestinal loops were created in eight guinea pigs. One week later, the distal aorta and right carotid artery were cannulated, and systemic blood pressure was recorded throughout the entire experiment. C. albicans (1 x 10(10)) was introduced into the Thiry-Vella loop, and the animals underwent a 40% full-thickness burn. Systolic hypotension was observed in the first 75 minutes postburn; then the systemic blood pressure returned to a normal range. Four hours after burn, 8 x 10(7) microspheres (10 microns) were injected into the aorta. The animals were sacrificed, and the Thiry-Vella loops were harvested and processed for light microscopy. At the microscopic level, within each villus, both the number of beads trapped in the arterioles and the number of Candida translocated into the enterocytes were counted. An inverse linear correlation between number of beads and number of translocated yeast per individual villus was found (r = -0.78; P < 0.005). These data provide further evidence that blood flow is an important determinant of the magnitude of microbial translocation, even within individual villi.

Gianotti, L., Alexander, J., Fukushima, R., & Childress, C. (1993). Translocation of Candida albicans is related to the blood flow of individual intestinal villi. CIRCULATORY SHOCK, 40(4), 250-257.

Translocation of Candida albicans is related to the blood flow of individual intestinal villi

GIANOTTI, LUCA VITTORIO;
1993-08

Abstract

Splanchnic ischemia is associated with increased bacterial translocation, but previous observations showed that translocation of Candida albicans did not occur uniformly among individual intestinal villi. This study was performed to investigate the relationship between the degree of Candida translocation and the microcirculation of individual villi. Thiry-Vella intestinal loops were created in eight guinea pigs. One week later, the distal aorta and right carotid artery were cannulated, and systemic blood pressure was recorded throughout the entire experiment. C. albicans (1 x 10(10)) was introduced into the Thiry-Vella loop, and the animals underwent a 40% full-thickness burn. Systolic hypotension was observed in the first 75 minutes postburn; then the systemic blood pressure returned to a normal range. Four hours after burn, 8 x 10(7) microspheres (10 microns) were injected into the aorta. The animals were sacrificed, and the Thiry-Vella loops were harvested and processed for light microscopy. At the microscopic level, within each villus, both the number of beads trapped in the arterioles and the number of Candida translocated into the enterocytes were counted. An inverse linear correlation between number of beads and number of translocated yeast per individual villus was found (r = -0.78; P < 0.005). These data provide further evidence that blood flow is an important determinant of the magnitude of microbial translocation, even within individual villi.
Articolo in rivista - Articolo scientifico
Scientifica
Cell Movement; Burns; Animals; Intestines; Guinea Pigs; Microcirculation; Intestinal Mucosa; Candida albicans; Microspheres; Female
English
Gianotti, L., Alexander, J., Fukushima, R., & Childress, C. (1993). Translocation of Candida albicans is related to the blood flow of individual intestinal villi. CIRCULATORY SHOCK, 40(4), 250-257.
Gianotti, L; Alexander, J; Fukushima, R; Childress, C
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10281/36685
Citazioni
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 35
Social impact