The present investigation was performed to study the kinetics of tissue distribution and deposition of Escherichia coli and endotoxin translocating from the intestine after thermal injury. Escherichia coli was grown in the presence of 14C glucose and both labeled bacteria and endotoxin prepared from the labeled bacteria were used as translocation probes. Escherichia coli (10(8) to 10(10) bacteria) and E. coli endotoxin (100 micrograms per animal) were gavaged into the stomach immediately before a 30% burn injury was inflicted in mice. Animals were killed 1, 4 and 24 hours after burn injury. Translocation occurred extensively within 1 hour after burn injury. Expressed as amount of radioactivity per gram of tissue, translocation was greatest in the mesenteric lymph node (MLN) followed by spleen, lung, and liver. Translocation of endotoxin was similar to translocation of intact bacteria, with the exception that less radioactivity could be found in the peritoneal cavity and more in the liver. Both intact E. coli and endotoxin translocated directly through the intact bowel wall. Killing of bacteria was greatest in the MLN and spleen, approximating 95% to more than 99% of translocating bacteria. Killing efficiency was lowest in the lungs. It is concluded that estimation of translocation by viable bacterial counts in tissues grossly underestimates the extent of translocation of bacteria and ignores the extent of translocation of endotoxin. Translocation of endotoxin may have biologic significance that is independent of and in addition to translocation of intact bacteria.
Alexander, J., Gianotti, L., Pyles, T., Carey, M., Babcock, G. (1991). Distribution and survival of Escherichia coli translocating from the intestine after thermal injury. ANNALS OF SURGERY, 213(6), 558-567 [10.1097/00000658-199106000-00005].
Distribution and survival of Escherichia coli translocating from the intestine after thermal injury
GIANOTTI, LUCA VITTORIO;
1991
Abstract
The present investigation was performed to study the kinetics of tissue distribution and deposition of Escherichia coli and endotoxin translocating from the intestine after thermal injury. Escherichia coli was grown in the presence of 14C glucose and both labeled bacteria and endotoxin prepared from the labeled bacteria were used as translocation probes. Escherichia coli (10(8) to 10(10) bacteria) and E. coli endotoxin (100 micrograms per animal) were gavaged into the stomach immediately before a 30% burn injury was inflicted in mice. Animals were killed 1, 4 and 24 hours after burn injury. Translocation occurred extensively within 1 hour after burn injury. Expressed as amount of radioactivity per gram of tissue, translocation was greatest in the mesenteric lymph node (MLN) followed by spleen, lung, and liver. Translocation of endotoxin was similar to translocation of intact bacteria, with the exception that less radioactivity could be found in the peritoneal cavity and more in the liver. Both intact E. coli and endotoxin translocated directly through the intact bowel wall. Killing of bacteria was greatest in the MLN and spleen, approximating 95% to more than 99% of translocating bacteria. Killing efficiency was lowest in the lungs. It is concluded that estimation of translocation by viable bacterial counts in tissues grossly underestimates the extent of translocation of bacteria and ignores the extent of translocation of endotoxin. Translocation of endotoxin may have biologic significance that is independent of and in addition to translocation of intact bacteria.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.