Aggregation of human ataxin-3 (AT3) into amyloid fibrils is responsible for spinocerebellar ataxia type 3. This protein consists of a folded N-terminal domain (Josephin domain, residues 1-182), a central flexible region (residues 183-291), a poly-glutamine sequence of variable length and a short C-terminal flexible region. Very little is known about the influence of the central flexible region on the conformational and aggregation properties of this protein. The present study aimed to investigate the specific role of this portion of the protein (residues 183-291). Accordingly, protein fragments 1-182 (AT3/182) and 1-291 (AT3/291) were produced and compared by thioflavin-T fluorescence, Fourier transform infrared spectroscopy, CD, intrinsic fluorescence and ESI-MS. It is shown that the central flexible region enhances protein aggregation and can populate conformational states with different degrees of compactness. Both monomeric and dimeric partially-folded forms are identified for both protein fragments under denaturing conditions. Partially-folded monomers and dimers accumulate to a larger extent in AT3/291. These species represent good candidates for early intermediates of the aggregation process under the experimental conditions employed in the present study.

Santambrogio, C., Frana, A., Natalello, A., Papaleo, E., Regonesi, M., Doglia, S., et al. (2012). The role of the central flexible region on the aggregation and conformational properties of human ataxin-3. THE FEBS JOURNAL, 279, 451-463 [10.1111/j.1742-4658.2011.08438.x].

The role of the central flexible region on the aggregation and conformational properties of human ataxin-3

SANTAMBROGIO, CARLO;NATALELLO, ANTONINO;PAPALEO, ELENA;REGONESI, MARIA ELENA;DOGLIA, SILVIA MARIA;TORTORA, PAOLO;INVERNIZZI, GAETANO;GRANDORI, RITA
2012

Abstract

Aggregation of human ataxin-3 (AT3) into amyloid fibrils is responsible for spinocerebellar ataxia type 3. This protein consists of a folded N-terminal domain (Josephin domain, residues 1-182), a central flexible region (residues 183-291), a poly-glutamine sequence of variable length and a short C-terminal flexible region. Very little is known about the influence of the central flexible region on the conformational and aggregation properties of this protein. The present study aimed to investigate the specific role of this portion of the protein (residues 183-291). Accordingly, protein fragments 1-182 (AT3/182) and 1-291 (AT3/291) were produced and compared by thioflavin-T fluorescence, Fourier transform infrared spectroscopy, CD, intrinsic fluorescence and ESI-MS. It is shown that the central flexible region enhances protein aggregation and can populate conformational states with different degrees of compactness. Both monomeric and dimeric partially-folded forms are identified for both protein fragments under denaturing conditions. Partially-folded monomers and dimers accumulate to a larger extent in AT3/291. These species represent good candidates for early intermediates of the aggregation process under the experimental conditions employed in the present study.
Articolo in rivista - Articolo scientifico
Amyloidogenic intermediates; ESI-MS; partially-folded species; poly-Q proteins; structural disorder
English
2012
279
451
463
none
Santambrogio, C., Frana, A., Natalello, A., Papaleo, E., Regonesi, M., Doglia, S., et al. (2012). The role of the central flexible region on the aggregation and conformational properties of human ataxin-3. THE FEBS JOURNAL, 279, 451-463 [10.1111/j.1742-4658.2011.08438.x].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/36667
Citazioni
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
Social impact