We analyse the interpolation properties of two-dimensional and three-dimensional low-order virtual element (VE) face and edge spaces, which generalize Nédélec and Raviart–Thomas polynomials to polygonal-polyhedral meshes. Moreover, we investigate the stability properties of the associated L2discrete bilinear forms, which typically appear in the VE discretization of problems in electromagnetism.

Beirão da Veiga, L., Mascotto, L. (2023). Interpolation and stability properties of low-order face and edge virtual element spaces. IMA JOURNAL OF NUMERICAL ANALYSIS, 43(2), 828-851 [10.1093/imanum/drac008].

Interpolation and stability properties of low-order face and edge virtual element spaces

Beirão da Veiga, L;Mascotto, L
2023

Abstract

We analyse the interpolation properties of two-dimensional and three-dimensional low-order virtual element (VE) face and edge spaces, which generalize Nédélec and Raviart–Thomas polynomials to polygonal-polyhedral meshes. Moreover, we investigate the stability properties of the associated L2discrete bilinear forms, which typically appear in the VE discretization of problems in electromagnetism.
Articolo in rivista - Articolo scientifico
face and edge spaces; polytopal meshes; stability; virtual element methods;
English
28-mar-2022
2023
43
2
828
851
none
Beirão da Veiga, L., Mascotto, L. (2023). Interpolation and stability properties of low-order face and edge virtual element spaces. IMA JOURNAL OF NUMERICAL ANALYSIS, 43(2), 828-851 [10.1093/imanum/drac008].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/363787
Citazioni
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
Social impact