We analyse the interpolation properties of two-dimensional and three-dimensional low-order virtual element (VE) face and edge spaces, which generalize Nedelec and Raviart-Thomas polynomials to polygonal-polyhedral meshes. Moreover, we investigate the stability properties of the associated L-2-discrete bilinear forms, which typically appear in the VE discretization of problems in electromagnetism.

Beirão da Veiga, L., Mascotto, L. (2023). Interpolation and stability properties of low-order face and edge virtual element spaces. IMA JOURNAL OF NUMERICAL ANALYSIS, 43(2), 828-851 [10.1093/imanum/drac008].

Interpolation and stability properties of low-order face and edge virtual element spaces

Beirão da Veiga, L;Mascotto, L
2023

Abstract

We analyse the interpolation properties of two-dimensional and three-dimensional low-order virtual element (VE) face and edge spaces, which generalize Nedelec and Raviart-Thomas polynomials to polygonal-polyhedral meshes. Moreover, we investigate the stability properties of the associated L-2-discrete bilinear forms, which typically appear in the VE discretization of problems in electromagnetism.
Articolo in rivista - Articolo scientifico
virtual element methods; polytopal meshes; face and edge spaces; stability
English
28-mar-2022
2023
43
2
828
851
none
Beirão da Veiga, L., Mascotto, L. (2023). Interpolation and stability properties of low-order face and edge virtual element spaces. IMA JOURNAL OF NUMERICAL ANALYSIS, 43(2), 828-851 [10.1093/imanum/drac008].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/363787
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
Social impact