We analyse the interpolation properties of two-dimensional and three-dimensional low-order virtual element (VE) face and edge spaces, which generalize Nedelec and Raviart-Thomas polynomials to polygonal-polyhedral meshes. Moreover, we investigate the stability properties of the associated L-2-discrete bilinear forms, which typically appear in the VE discretization of problems in electromagnetism.
Beirão da Veiga, L., Mascotto, L. (2023). Interpolation and stability properties of low-order face and edge virtual element spaces. IMA JOURNAL OF NUMERICAL ANALYSIS, 43(2), 828-851 [10.1093/imanum/drac008].
Interpolation and stability properties of low-order face and edge virtual element spaces
Beirão da Veiga, L;Mascotto, L
2023
Abstract
We analyse the interpolation properties of two-dimensional and three-dimensional low-order virtual element (VE) face and edge spaces, which generalize Nedelec and Raviart-Thomas polynomials to polygonal-polyhedral meshes. Moreover, we investigate the stability properties of the associated L-2-discrete bilinear forms, which typically appear in the VE discretization of problems in electromagnetism.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.