We analyse the interpolation properties of two-dimensional and three-dimensional low-order virtual element (VE) face and edge spaces, which generalize Nédélec and Raviart–Thomas polynomials to polygonal-polyhedral meshes. Moreover, we investigate the stability properties of the associated L2discrete bilinear forms, which typically appear in the VE discretization of problems in electromagnetism.
Beirão da Veiga, L., Mascotto, L. (2023). Interpolation and stability properties of low-order face and edge virtual element spaces. IMA JOURNAL OF NUMERICAL ANALYSIS, 43(2), 828-851 [10.1093/imanum/drac008].
Interpolation and stability properties of low-order face and edge virtual element spaces
Beirão da Veiga, L;Mascotto, L
2023
Abstract
We analyse the interpolation properties of two-dimensional and three-dimensional low-order virtual element (VE) face and edge spaces, which generalize Nédélec and Raviart–Thomas polynomials to polygonal-polyhedral meshes. Moreover, we investigate the stability properties of the associated L2discrete bilinear forms, which typically appear in the VE discretization of problems in electromagnetism.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10281-363787_VoR.pdf
accesso aperto
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Creative Commons
Dimensione
490.19 kB
Formato
Adobe PDF
|
490.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.