Intracellular recordings were obtained using biocytin-filled electrodes from 78 neurones located in both dysplastic neocortex and subcortical heterotopic aggregates in a model of neuronal migration disorder induced in rats by means of a double methylazoxymethanol injection given on embryonic day 15. Both regular spiking and intrinsically bursting pyramidal neurones were found in all of the examined structures and were synaptically activated by subcortical stimulation. In a neuronal subpopulation (22%) located in the neocortex as well as in the subcortical heterotopic aggregates, the injection of depolarising current pulses elicited aberrant firing patterns, consisting of repetitive bursts of APs that gradually increased in duration and eventually merged in a long-lasting discharge. The gradual development of this 'excessive' bursting behaviour suggests a progressive run-down of the slow components of the hyperpolarising afterpotential
Sancini, G., Franceschetti, S., Battaglia, G., Colacitti, C., Di Luca, M., Spreafico, R., et al. (1998). Dysplastic neocortex and subcortical heterotopias in methylazoxymethanol-treated rats: an intracellular study of identified pyramidal neurones. NEUROSCIENCE LETTERS, 246(3), 181-185 [10.1016/S0304-3940(98)00258-4].
Dysplastic neocortex and subcortical heterotopias in methylazoxymethanol-treated rats: an intracellular study of identified pyramidal neurones
Sancini, GA;
1998
Abstract
Intracellular recordings were obtained using biocytin-filled electrodes from 78 neurones located in both dysplastic neocortex and subcortical heterotopic aggregates in a model of neuronal migration disorder induced in rats by means of a double methylazoxymethanol injection given on embryonic day 15. Both regular spiking and intrinsically bursting pyramidal neurones were found in all of the examined structures and were synaptically activated by subcortical stimulation. In a neuronal subpopulation (22%) located in the neocortex as well as in the subcortical heterotopic aggregates, the injection of depolarising current pulses elicited aberrant firing patterns, consisting of repetitive bursts of APs that gradually increased in duration and eventually merged in a long-lasting discharge. The gradual development of this 'excessive' bursting behaviour suggests a progressive run-down of the slow components of the hyperpolarising afterpotentialI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.