The probability that a one dimensional excited random walk in stationary ergodic and elliptic cookie environment is transient to the right (left) is either zero or one. This solves a problem posed by Kosygina and Zerner (Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013) 105-157). As an application, a law of large numbers holds in these conditions.
Amir, G., Berger, N., Orenshtein, T. (2016). Zero-one law for directional transience of one dimensional excited random walks. ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 52(1), 47-57 [10.1214/14-AIHP615].
Zero-one law for directional transience of one dimensional excited random walks
Orenshtein T.
2016
Abstract
The probability that a one dimensional excited random walk in stationary ergodic and elliptic cookie environment is transient to the right (left) is either zero or one. This solves a problem posed by Kosygina and Zerner (Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013) 105-157). As an application, a law of large numbers holds in these conditions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Amir-2016-Ann Inst H Poincaré Probab Statist-VoR.pdf
accesso aperto
Descrizione: Article
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Licenza:
Altro
Dimensione
200.87 kB
Formato
Adobe PDF
|
200.87 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.