The probability that a one dimensional excited random walk in stationary ergodic and elliptic cookie environment is transient to the right (left) is either zero or one. This solves a problem posed by Kosygina and Zerner (Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013) 105-157). As an application, a law of large numbers holds in these conditions.

Amir, G., Berger, N., Orenshtein, T. (2016). Zero-one law for directional transience of one dimensional excited random walks. ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 52(1), 47-57 [10.1214/14-AIHP615].

Zero-one law for directional transience of one dimensional excited random walks

Orenshtein T.
2016

Abstract

The probability that a one dimensional excited random walk in stationary ergodic and elliptic cookie environment is transient to the right (left) is either zero or one. This solves a problem posed by Kosygina and Zerner (Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013) 105-157). As an application, a law of large numbers holds in these conditions.
Articolo in rivista - Articolo scientifico
Cookie walk; Directional transience; Excited random walk; Law of large numbers; Limit theorem; Random environment; Recurrence; Zero-one law;
English
47
57
11
Amir, G., Berger, N., Orenshtein, T. (2016). Zero-one law for directional transience of one dimensional excited random walks. ANNALES DE L'INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 52(1), 47-57 [10.1214/14-AIHP615].
Amir, G; Berger, N; Orenshtein, T
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/362306
Citazioni
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
Social impact