Three-phase, doubly-fed induction (DFI) machines are key constituents in energy conversion processes. An ideal DFI machine is modeled by inductance matrices which relate electric and magnetic quantities. This work focusses on the algebraic properties of the mutual (rotor-to-stator) inductance matrix L_{sr}: its kernel, range and left zero divisors are determined. A formula for the differentiation of L_{sr} with respect to the rotor angle theta_r is obtained. Under suitable hypotheses L_{sr} and its derivative are shown to admit an exponential representation. A recurrent formula for the powers of the corresponding infinitesimal generator A_0 is provided. Historically, magnetic decoupling and other requirements led to the Blondel-Park transformation which, by mapping electric quantities to a suitable reference frame, simplifies the DGI machine equations. Herewith the transformation in exponential form is axiomatically derived and the infinitesimal generator is related to A_0. Accordingly, a formula for the product of matrices is derived which simplifies the proof of the Electric Torque Theorem. The latter is framed in a Legendre transform context. Finally, a simple, ``realistic'' machine model is outlined, where the three-fold rotor symmetry is broken: a few properties of the resulting mutual inductance matrix are derived.

Crosta, G., Chen, G. (2022). Transformation groups of the doubly-fed induction machine. In M. Andriychuk (a cura di), Matrix Theory - Classics and Advances (pp. 1-19). Rijeka : IntechOpen.

### Transformation groups of the doubly-fed induction machine

#### Abstract

Three-phase, doubly-fed induction (DFI) machines are key constituents in energy conversion processes. An ideal DFI machine is modeled by inductance matrices which relate electric and magnetic quantities. This work focusses on the algebraic properties of the mutual (rotor-to-stator) inductance matrix L_{sr}: its kernel, range and left zero divisors are determined. A formula for the differentiation of L_{sr} with respect to the rotor angle theta_r is obtained. Under suitable hypotheses L_{sr} and its derivative are shown to admit an exponential representation. A recurrent formula for the powers of the corresponding infinitesimal generator A_0 is provided. Historically, magnetic decoupling and other requirements led to the Blondel-Park transformation which, by mapping electric quantities to a suitable reference frame, simplifies the DGI machine equations. Herewith the transformation in exponential form is axiomatically derived and the infinitesimal generator is related to A_0. Accordingly, a formula for the product of matrices is derived which simplifies the proof of the Electric Torque Theorem. The latter is framed in a Legendre transform context. Finally, a simple, ``realistic'' machine model is outlined, where the three-fold rotor symmetry is broken: a few properties of the resulting mutual inductance matrix are derived.
##### Scheda breve Scheda completa Scheda completa (DC) Capitolo o saggio
mutual inductance matrix, Blondel-Park transformation, exponential representation, infinitesimal generator, zero divisors, circulants, broken symmetry
English
Matrix Theory - Classics and Advances
2022
978-1-80355-823-3
Capitolo scritto su invito del Curatore; forma non definitiva a causa di errori tipografici, errori di formattazione ed alterazioni non autorizzate tutti dovuti alla Casa Editrice; approvazione degli autori non ancora concessa. Spese di pubblicazione già pagate dall'autore. Qualora la Casa Editrice rifiutasse la correzione dei propri errori ed il ripristino del testo originale, l'autore si riserva di rendere immediatamente pubblici il capitolo e la lettera allegata.
Crosta, G., Chen, G. (2022). Transformation groups of the doubly-fed induction machine. In M. Andriychuk (a cura di), Matrix Theory - Classics and Advances (pp. 1-19). Rijeka : IntechOpen.
Crosta, G; Chen, G
File in questo prodotto:
File
TransformationGroups.pdf

Solo gestori archivio

Descrizione: sorgente: TransformationGroups ; classe: IntechOpen-Crosta.cls ; compilazione: TeXShop Version 4.01 (4.01) ; prodotto: TransformationGroups.pdf PDF 1.5, risoluzione: 595 × 841, creatore di contenuto: TeX, programma di codifica: pdfTeX-1.40.13.
Tipologia di allegato: Submitted Version (Pre-print)
Dimensione 205.8 kB
2022-0313_Reliability.pdf

Solo gestori archivio

Descrizione: sorgente: 2022-0313_Reliability.tex ; classe: spie.cls ; compilazione: TeXShop Version 4.01 (4.01) ; prodotto: 2022-0313_Reliability.pdf PDF 1.5, risoluzione: 612 × 792, creatore di contenuto: TeX, programma di codifica: pdfTeX-1.40.13.
Tipologia di allegato: Other attachments
Dimensione 147.17 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/10281/360780`
• ND
• ND