We consider gravity compactifications whose internal space consists of small bridges connecting larger manifolds, possibly noncompact. We prove that, under rather general assumptions, this leads to a massive spin-two field with very small mass. The argument involves a recently-noticed relation to Bakry-Émery geometry, a version of the so-called Cheeger constant, and the theory of synthetic Ricci lower bounds. The latter technique allows generalizations to non-smooth spaces such as those with D-brane singularities. For AdSd vacua with a bridge admitting an AdSd+1 interpretation, the holographic dual is a CFTd with two CFTd−1 boundaries. The ratio of their degrees of freedom gives the graviton mass, generalizing results obtained by Bachas and Lavdas for d = 4. We also prove new bounds on the higher eigenvalues. These are in agreement with the spin-two swampland conjecture in the regime where the background is scale-separated; in the opposite regime we provide examples where they are in naive tension with it.

De Luca, G., De Ponti, N., Mondino, A., Tomasiello, A. (2021). Cheeger bounds on spin-two fields. JOURNAL OF HIGH ENERGY PHYSICS, 2021(12) [10.1007/JHEP12(2021)217].

Cheeger bounds on spin-two fields

De Luca G. B.
;
De Ponti N.;Tomasiello A.
2021

Abstract

We consider gravity compactifications whose internal space consists of small bridges connecting larger manifolds, possibly noncompact. We prove that, under rather general assumptions, this leads to a massive spin-two field with very small mass. The argument involves a recently-noticed relation to Bakry-Émery geometry, a version of the so-called Cheeger constant, and the theory of synthetic Ricci lower bounds. The latter technique allows generalizations to non-smooth spaces such as those with D-brane singularities. For AdSd vacua with a bridge admitting an AdSd+1 interpretation, the holographic dual is a CFTd with two CFTd−1 boundaries. The ratio of their degrees of freedom gives the graviton mass, generalizing results obtained by Bachas and Lavdas for d = 4. We also prove new bounds on the higher eigenvalues. These are in agreement with the spin-two swampland conjecture in the regime where the background is scale-separated; in the opposite regime we provide examples where they are in naive tension with it.
Articolo in rivista - Articolo scientifico
Differential and Algebraic Geometry; p-branes; Spacetime Singularities; Superstring Vacua;
English
2021
2021
12
217
open
De Luca, G., De Ponti, N., Mondino, A., Tomasiello, A. (2021). Cheeger bounds on spin-two fields. JOURNAL OF HIGH ENERGY PHYSICS, 2021(12) [10.1007/JHEP12(2021)217].
File in questo prodotto:
File Dimensione Formato  
10281-360256_VoR.pdf

accesso aperto

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Creative Commons
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/360256
Citazioni
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
Social impact