Ionic liquids (ILs) are an increasingly important component of electrolytes for lithium and sodium batteries. Here, the physicochemical properties of the system N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr13TFSI) ionic liquid and NaTFSI are investigated vs. the concentration of the sodium salt and the temperature. The explored concentration range was (1-x) Pyr13TFSI: x NaTFSI with x (mole fraction) = 0, 0.02, 0.05, 0.1, 0.2. 23Na solid-state NMR reveals that the Na+ ions exist in two distinct environments: mobile Na+ ions (1), and Na+ ions involved in clusters or even bigger interacting networks (2). The ratio between mobile and bonded Na+ populations increases with temperature and decreases with increasing salt concentration, reaching 100% at 60 °C for the most diluted compositions. Raman spectroscopy allows to identify the quantity of free and bonded anions depending on the concentration, and to measure the number of Na+ ions solvating the TFSI− anion (SN = 4). The combined NMR and Raman results allow us to estimate the salt solubility range, x = 0.12 ± 0.02. The composition x = 0.1 showed satisfying stability when cycled versus high-potential cathodic material Na0.44MnO2 (NMO) in a cell Na/IL/NMO.
Stigliano, P., Ferrara, C., Pianta, N., Gentile, A., Mezzomo, L., Lorenzi, R., et al. (2022). Physicochemical properties of Pyr13TFSI-NaTFSI electrolyte for sodium batteries. ELECTROCHIMICA ACTA, 412(20 April 2022) [10.1016/j.electacta.2022.140123].
Physicochemical properties of Pyr13TFSI-NaTFSI electrolyte for sodium batteries
Ferrara, C
;Pianta, N;Gentile, A;Mezzomo, L;Lorenzi, R;Ruffo, R;Mustarelli, P
2022
Abstract
Ionic liquids (ILs) are an increasingly important component of electrolytes for lithium and sodium batteries. Here, the physicochemical properties of the system N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr13TFSI) ionic liquid and NaTFSI are investigated vs. the concentration of the sodium salt and the temperature. The explored concentration range was (1-x) Pyr13TFSI: x NaTFSI with x (mole fraction) = 0, 0.02, 0.05, 0.1, 0.2. 23Na solid-state NMR reveals that the Na+ ions exist in two distinct environments: mobile Na+ ions (1), and Na+ ions involved in clusters or even bigger interacting networks (2). The ratio between mobile and bonded Na+ populations increases with temperature and decreases with increasing salt concentration, reaching 100% at 60 °C for the most diluted compositions. Raman spectroscopy allows to identify the quantity of free and bonded anions depending on the concentration, and to measure the number of Na+ ions solvating the TFSI− anion (SN = 4). The combined NMR and Raman results allow us to estimate the salt solubility range, x = 0.12 ± 0.02. The composition x = 0.1 showed satisfying stability when cycled versus high-potential cathodic material Na0.44MnO2 (NMO) in a cell Na/IL/NMO.File | Dimensione | Formato | |
---|---|---|---|
post print pyridine 2022.pdf
Accesso Aperto
Tipologia di allegato:
Author’s Accepted Manuscript, AAM (Post-print)
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri |
Electrochimica acta_2022_Physicochemical properties of Pyr13TFSI NaTFSI.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
2.89 MB
Formato
Adobe PDF
|
2.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.