Usually Fokker–Planck type partial differential equations (PDEs) are well-posed if the initial condition is specified. In this paper, alternatively, we consider the inverse problem which consists in prescribing final data: in particular we give sufficient conditions for uniqueness. In the second part of the paper we provide a probabilistic representation of those PDEs in the form of a solution of a McKean type equation corresponding to the time-reversal dynamics of a diffusion process.

Izydorczyk, L., Oudjane, N., Russo, F., Tessitore, G. (2022). Fokker–Planck equations with terminal condition and related McKean probabilistic representation. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 29(1) [10.1007/s00030-021-00736-1].

Fokker–Planck equations with terminal condition and related McKean probabilistic representation

Tessitore G.
2022

Abstract

Usually Fokker–Planck type partial differential equations (PDEs) are well-posed if the initial condition is specified. In this paper, alternatively, we consider the inverse problem which consists in prescribing final data: in particular we give sufficient conditions for uniqueness. In the second part of the paper we provide a probabilistic representation of those PDEs in the form of a solution of a McKean type equation corresponding to the time-reversal dynamics of a diffusion process.
Articolo in rivista - Articolo scientifico
Fokker Planck equation; Inverse problem; McKean stochastic differential equation; Probabilistic representation of PDEs; Time-reversed diffusion;
English
8-gen-2022
2022
29
1
10
partially_open
Izydorczyk, L., Oudjane, N., Russo, F., Tessitore, G. (2022). Fokker–Planck equations with terminal condition and related McKean probabilistic representation. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 29(1) [10.1007/s00030-021-00736-1].
File in questo prodotto:
File Dimensione Formato  
Izydorczyk-2022-Nodea-AAM.pdf.pdf

accesso aperto

Descrizione: This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections.
Tipologia di allegato: Author’s Accepted Manuscript, AAM (Post-print)
Licenza: Altro
Dimensione 485.26 kB
Formato Adobe PDF
485.26 kB Adobe PDF Visualizza/Apri
Izydorczyk-2022-Nodea-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 595 kB
Formato Adobe PDF
595 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/359690
Citazioni
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
Social impact