We deal with eigenvalue problems for the Laplacian with varying mixed boundary conditions, consisting in homogeneous Neumann conditions on a vanishing portion of the boundary and Dirichlet conditions on the complement. By the study of an Almgren-type frequency function, we derive upper and lower bounds of the eigenvalue variation and sharp estimates in the case of a strictly star-shaped Neumann region.

Felli, V., Noris, B., Ognibene, R. (2022). Eigenvalues of the Laplacian with moving mixed boundary conditions: The case of disappearing Neumann region. JOURNAL OF DIFFERENTIAL EQUATIONS, 320(25 May 2022), 247-315 [10.1016/j.jde.2022.02.052].

Eigenvalues of the Laplacian with moving mixed boundary conditions: The case of disappearing Neumann region

Felli, Veronica
;
2022

Abstract

We deal with eigenvalue problems for the Laplacian with varying mixed boundary conditions, consisting in homogeneous Neumann conditions on a vanishing portion of the boundary and Dirichlet conditions on the complement. By the study of an Almgren-type frequency function, we derive upper and lower bounds of the eigenvalue variation and sharp estimates in the case of a strictly star-shaped Neumann region.
Articolo in rivista - Articolo scientifico
Asymptotics of Laplacian eigenvalues; Mixed boundary conditions; Monotonicity formula;
English
9-mar-2022
2022
320
25 May 2022
247
315
partially_open
Felli, V., Noris, B., Ognibene, R. (2022). Eigenvalues of the Laplacian with moving mixed boundary conditions: The case of disappearing Neumann region. JOURNAL OF DIFFERENTIAL EQUATIONS, 320(25 May 2022), 247-315 [10.1016/j.jde.2022.02.052].
File in questo prodotto:
File Dimensione Formato  
Felli-2022-JDE-VoR.pdf

Solo gestori archivio

Descrizione: Publisher’s Version
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 737.34 kB
Formato Adobe PDF
737.34 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Felli-2022-JDE-preprint.pdf

accesso aperto

Descrizione: Preprint
Tipologia di allegato: Submitted Version (Pre-print)
Licenza: Creative Commons
Dimensione 802.45 kB
Formato Adobe PDF
802.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/359097
Citazioni
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
Social impact