Given today’s political targets, energy production from agricultural areas is likely to increase and therefore needs to be more sustainable. The aim of this study was thus to carry out a long-term field trial based on the poplar short-rotation coppice (SRC), in order to compare dry matter, energy-use efficiency and the net energy yield obtainable from this crop in relation to different harvest frequencies (1-, 2- and 3-year cutting cycles). The results showed that poplar SRC performed very well under temperate climates as it can survive up to 12 years, providing a considerable annual biomass yield (9.9, 13.8, 16.4 t ha-1 yr-1 for annual T1, biannual T2 and triennial T3 cutting cycles, respectively). The system tested in southern Europe showed a positive energy balance characterized by a high energy efficiency. We found that the choice of harvest interval had huge consequences in terms of energy yields. In fact, the energy efficiency improved from T1 to T2 and T3, while the net energy yield increased from 172 to 299 GJ ha-1 yr-1. This study suggests that, with 3-year harvest cycles, poplar SRC can contribute to agronomic and environmental sustainability not only in terms of its high yield and energy efficiency but also in terms of its positive influence on limiting soil tillage and on the environment, given its low pesticide and nutrient requirements.

Nassi o Di Nasso, N., Guidi, W., Ragaglini, G., Tozzini, C., Bonari, E. (2010). Biomass production and energy balance of a 12-year-old short-rotation coppice poplar stand under different cutting cycles. GCB BIOENERGY, 2(2), 89-97 [10.1111/j.1757-1707.2010.01043.x].

Biomass production and energy balance of a 12-year-old short-rotation coppice poplar stand under different cutting cycles

GUIDI W;
2010

Abstract

Given today’s political targets, energy production from agricultural areas is likely to increase and therefore needs to be more sustainable. The aim of this study was thus to carry out a long-term field trial based on the poplar short-rotation coppice (SRC), in order to compare dry matter, energy-use efficiency and the net energy yield obtainable from this crop in relation to different harvest frequencies (1-, 2- and 3-year cutting cycles). The results showed that poplar SRC performed very well under temperate climates as it can survive up to 12 years, providing a considerable annual biomass yield (9.9, 13.8, 16.4 t ha-1 yr-1 for annual T1, biannual T2 and triennial T3 cutting cycles, respectively). The system tested in southern Europe showed a positive energy balance characterized by a high energy efficiency. We found that the choice of harvest interval had huge consequences in terms of energy yields. In fact, the energy efficiency improved from T1 to T2 and T3, while the net energy yield increased from 172 to 299 GJ ha-1 yr-1. This study suggests that, with 3-year harvest cycles, poplar SRC can contribute to agronomic and environmental sustainability not only in terms of its high yield and energy efficiency but also in terms of its positive influence on limiting soil tillage and on the environment, given its low pesticide and nutrient requirements.
Articolo in rivista - Articolo scientifico
Biomass yield; Energy efficiency; Energy yield; Harvesting cycle; Poplar; Short-rotation forestry;
English
89
97
9
Nassi o Di Nasso, N., Guidi, W., Ragaglini, G., Tozzini, C., Bonari, E. (2010). Biomass production and energy balance of a 12-year-old short-rotation coppice poplar stand under different cutting cycles. GCB BIOENERGY, 2(2), 89-97 [10.1111/j.1757-1707.2010.01043.x].
Nassi o Di Nasso, N; Guidi, W; Ragaglini, G; Tozzini, C; Bonari, E
File in questo prodotto:
File Dimensione Formato  
Biomass production and energy balance of a 12-year-old.pdf

Solo gestori archivio

Dimensione 302.04 kB
Formato Adobe PDF
302.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/358945
Citazioni
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 99
Social impact