An interesting result of magnetic chaos reduction in RFX-mod high current discharges is the development of strong electron transport barriers. An internal heat and particle transport barrier is formed when a bifurcation process changes the magnetic configuration into a helical equilibrium and chaos reduction follows, together with the formation of a null in the q shear. Strong temperature gradients develop, corresponding to a decreased thermal and particle transport. Turbulence analysis shows that the large electron temperature gradients are limited by the onset of micro-tearing modes, in addition to residual magnetic chaos. A new type of electron transport barrier with strong temperature gradients develops more externally (r/a = 0.8) accompanied by a 30% improvement of the global confinement time. The mechanism responsible for the formation of such a barrier is still unknown but it is likely associated with a local reduction of magnetic chaos. These external barriers develop primarily in situations of well-conditioned walls so that they might be regarded as attempts towards an L-H transition. Both types of barriers occur in high-current low-collisionality regimes. Analogies with tokamak and stellarators are discussed. © 2011 IAEA, Vienna.
Puiatti, M., Valisa, M., Agostini, M., Auriemma, F., Bonomo, F., Carraro, L., et al. (2011). Internal and external electron transport barriers in the RFX-mod reversed field pinch. NUCLEAR FUSION, 51(7) [10.1088/0029-5515/51/7/073038].
Internal and external electron transport barriers in the RFX-mod reversed field pinch
Martines E;
2011
Abstract
An interesting result of magnetic chaos reduction in RFX-mod high current discharges is the development of strong electron transport barriers. An internal heat and particle transport barrier is formed when a bifurcation process changes the magnetic configuration into a helical equilibrium and chaos reduction follows, together with the formation of a null in the q shear. Strong temperature gradients develop, corresponding to a decreased thermal and particle transport. Turbulence analysis shows that the large electron temperature gradients are limited by the onset of micro-tearing modes, in addition to residual magnetic chaos. A new type of electron transport barrier with strong temperature gradients develops more externally (r/a = 0.8) accompanied by a 30% improvement of the global confinement time. The mechanism responsible for the formation of such a barrier is still unknown but it is likely associated with a local reduction of magnetic chaos. These external barriers develop primarily in situations of well-conditioned walls so that they might be regarded as attempts towards an L-H transition. Both types of barriers occur in high-current low-collisionality regimes. Analogies with tokamak and stellarators are discussed. © 2011 IAEA, Vienna.File | Dimensione | Formato | |
---|---|---|---|
114 - NF 11 transport barriers IAEA.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.