In this paper, we extend the hybridization procedure proposed in [D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, ESAIM Math. Model. Numer. Anal. 19 (1985) 7-32] to the Virtual Element Method for linear elasticity problems based on the Hellinger-Reissner principle. To illustrate such a technique, we focus on a specific 2D scheme, but other methods and 3D problems can be considered as well. We also show how to design a better approximation of the displacement field using a straightforward post-processing procedure. The numerical experiments confirm the theory for both two and three-dimensional problems.

Dassi, F., Lovadina, C., Visinoni, M. (2021). Hybridization of the virtual element method for linear elasticity problems. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 31(14), 2979-3008 [10.1142/S0218202521500676].

Hybridization of the virtual element method for linear elasticity problems

Dassi F.;
2021

Abstract

In this paper, we extend the hybridization procedure proposed in [D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates, ESAIM Math. Model. Numer. Anal. 19 (1985) 7-32] to the Virtual Element Method for linear elasticity problems based on the Hellinger-Reissner principle. To illustrate such a technique, we focus on a specific 2D scheme, but other methods and 3D problems can be considered as well. We also show how to design a better approximation of the displacement field using a straightforward post-processing procedure. The numerical experiments confirm the theory for both two and three-dimensional problems.
Articolo in rivista - Articolo scientifico
elasticity problems; hybridization; Virtual element methods;
English
20-dic-2021
2021
31
14
2979
3008
reserved
Dassi, F., Lovadina, C., Visinoni, M. (2021). Hybridization of the virtual element method for linear elasticity problems. MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES, 31(14), 2979-3008 [10.1142/S0218202521500676].
File in questo prodotto:
File Dimensione Formato  
Dassi-2021-Mathematical Models and Methods in Applied Sciences-VoR.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Licenza: Tutti i diritti riservati
Dimensione 834.47 kB
Formato Adobe PDF
834.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/352495
Citazioni
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
Social impact