Single helical axis (SHAx) states obtained in high current reversed field pinch (RFP) plasmas feature an internal transport barrier delimiting the hot helical core region. The electron temperature jump across this region, and the related temperature gradient, display a clear relationship with the normalized amplitude of the secondary MHD modes. A transport analysis performed with the ASTRA code, taking into account the helical geometry, yields values of the thermal conductivity in the barrier region as low as 5 m(2) s(-1). The thermal conductivity is also related to the secondary mode amplitude. Since such amplitude is reduced when plasma current is increased, it is expected that higher current plasmas will display even steeper thermal gradients and hotter helical cores.

Lorenzini, R., Alfier, A., Auriemma, F., Fassina, A., Franz, P., Innocente, P., et al. (2012). On the energy transport in internal transport barriers of RFP plasmas. NUCLEAR FUSION, 52(6) [10.1088/0029-5515/52/6/062004].

On the energy transport in internal transport barriers of RFP plasmas

Martines E;
2012

Abstract

Single helical axis (SHAx) states obtained in high current reversed field pinch (RFP) plasmas feature an internal transport barrier delimiting the hot helical core region. The electron temperature jump across this region, and the related temperature gradient, display a clear relationship with the normalized amplitude of the secondary MHD modes. A transport analysis performed with the ASTRA code, taking into account the helical geometry, yields values of the thermal conductivity in the barrier region as low as 5 m(2) s(-1). The thermal conductivity is also related to the secondary mode amplitude. Since such amplitude is reduced when plasma current is increased, it is expected that higher current plasmas will display even steeper thermal gradients and hotter helical cores.
Articolo in rivista - Articolo scientifico
reversed field pinch; RFP; QSH; quasi-single helicity; SHAx; ASTRA;
English
2012
52
6
062004
reserved
Lorenzini, R., Alfier, A., Auriemma, F., Fassina, A., Franz, P., Innocente, P., et al. (2012). On the energy transport in internal transport barriers of RFP plasmas. NUCLEAR FUSION, 52(6) [10.1088/0029-5515/52/6/062004].
File in questo prodotto:
File Dimensione Formato  
122 - NF 12 energy transport in ITB.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 207.92 kB
Formato Adobe PDF
207.92 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/351964
Citazioni
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 27
Social impact