We here review what is known about the dunefields and fluvial systems of the Kalahari Basin in terms of geological setting and Quaternary dynamics and set out what has been hypothesized about the provenance of Kalahari sand so far. Previous work has tackled this problem by applying a limited number of techniques (mostly sediment textures and heavy minerals) to parts of the large dryland. The generally highly quartzose mineralogy of aeolian dunes and their compositional variability have been only broadly evaluated and several sedimentological issues have thus remained controversial, including the relative role played by fluvial processes versus aeolian reworking of older sediments and weathering controls. This reveals a need for a systematic provenance study that considers the entire basin. For this reason, here we combine original petrographic, heavy-mineral, and detrital-zircon geochronology data with previously published clay-mineral, geochemical, and geochronological information to present the first comprehensive provenance study of the vast Kalahari sand sea. Our multi-proxy dataset comprises 100 samples, collected across the Kalahari Basin from 11°S (NW Zambia) to 28°S (NW South Africa) and from 15°E (Angola) to 28°30′W (Zimbabwe). Kalahari aeolian-dune sand mostly consists of monocrystalline quartz associated with durable heavy minerals and thus drastically differs from coastal dunefields of Namibia and Angola, which are notably richer in feldspar, lithic grains, and chemically labile clinopyroxene. The western Kalahari dunefield of southeastern Namibia is distinguished by its quartz-rich feldspatho-quartzose sand, indicating partly first-cycle provenance from the Damara Belt and Mesoproterozoic terranes. Within the basin, supply from Proterozoic outcrops is documented locally. Composition varies notably at the western and eastern edges of the sand sea, reflecting partly first-cycle fluvial supply from crystalline basements of Cambrian to Archean age in central Namibia and western Zimbabwe. Basaltic detritus from Jurassic Karoo lavas is dominant in aeolian dunes near Victoria Falls. Bulk-sediment petrography and geochemistry of northern and central Kalahari pure quartzose sand, together with heavy-mineral and clay-mineral assemblages, indicate extensive recycling via aeolian and ephemeral-fluvial processes in arid climate of sediment strongly weathered during previous humid climatic stages in subequatorial Africa. Distilled homogenized composition of aeolian-dune sand thus reverberates the echo of paleo-weathering passed on to the present landscape through multiple episodes of fluvial and aeolian recycling. Intracratonic sag basins such as the Kalahari contain vast amounts of quartz-rich polycyclic sand that may be tapped by rivers eroding backwards during rejuvenation stages associated with rift propagation. Such an event may considerably increase the sediment flux to the ocean, fostering the progradation of river-fed continental-embankments, as documented by augmented accumulation rates coupled with upward increasing mineralogical durability in the post-Tortonian subsurface succession of the Zambezi Delta. The Central Kalahari is not a true desert. It has none of the naked, shifting sand dunes that typify the Sahara and other great deserts of the world. In some years the rains may exceed twenty — once even forty — inches, awakening a magic green paradise.” Mark Owens, Cry of the Kalahari.

Garzanti, E., Pastore, G., Stone, A., Vainer, S., Vermeesch, P., Resentini, A. (2022). Provenance of Kalahari Sand: Paleoweathering and recycling in a linked fluvial-aeolian system. EARTH-SCIENCE REVIEWS, 224(January 2022), 1-26 [10.1016/j.earscirev.2021.103867].

Provenance of Kalahari Sand: Paleoweathering and recycling in a linked fluvial-aeolian system

Garzanti E.
Primo
;
Pastore G.
Secondo
;
Resentini A.
Ultimo
2022

Abstract

We here review what is known about the dunefields and fluvial systems of the Kalahari Basin in terms of geological setting and Quaternary dynamics and set out what has been hypothesized about the provenance of Kalahari sand so far. Previous work has tackled this problem by applying a limited number of techniques (mostly sediment textures and heavy minerals) to parts of the large dryland. The generally highly quartzose mineralogy of aeolian dunes and their compositional variability have been only broadly evaluated and several sedimentological issues have thus remained controversial, including the relative role played by fluvial processes versus aeolian reworking of older sediments and weathering controls. This reveals a need for a systematic provenance study that considers the entire basin. For this reason, here we combine original petrographic, heavy-mineral, and detrital-zircon geochronology data with previously published clay-mineral, geochemical, and geochronological information to present the first comprehensive provenance study of the vast Kalahari sand sea. Our multi-proxy dataset comprises 100 samples, collected across the Kalahari Basin from 11°S (NW Zambia) to 28°S (NW South Africa) and from 15°E (Angola) to 28°30′W (Zimbabwe). Kalahari aeolian-dune sand mostly consists of monocrystalline quartz associated with durable heavy minerals and thus drastically differs from coastal dunefields of Namibia and Angola, which are notably richer in feldspar, lithic grains, and chemically labile clinopyroxene. The western Kalahari dunefield of southeastern Namibia is distinguished by its quartz-rich feldspatho-quartzose sand, indicating partly first-cycle provenance from the Damara Belt and Mesoproterozoic terranes. Within the basin, supply from Proterozoic outcrops is documented locally. Composition varies notably at the western and eastern edges of the sand sea, reflecting partly first-cycle fluvial supply from crystalline basements of Cambrian to Archean age in central Namibia and western Zimbabwe. Basaltic detritus from Jurassic Karoo lavas is dominant in aeolian dunes near Victoria Falls. Bulk-sediment petrography and geochemistry of northern and central Kalahari pure quartzose sand, together with heavy-mineral and clay-mineral assemblages, indicate extensive recycling via aeolian and ephemeral-fluvial processes in arid climate of sediment strongly weathered during previous humid climatic stages in subequatorial Africa. Distilled homogenized composition of aeolian-dune sand thus reverberates the echo of paleo-weathering passed on to the present landscape through multiple episodes of fluvial and aeolian recycling. Intracratonic sag basins such as the Kalahari contain vast amounts of quartz-rich polycyclic sand that may be tapped by rivers eroding backwards during rejuvenation stages associated with rift propagation. Such an event may considerably increase the sediment flux to the ocean, fostering the progradation of river-fed continental-embankments, as documented by augmented accumulation rates coupled with upward increasing mineralogical durability in the post-Tortonian subsurface succession of the Zambezi Delta. The Central Kalahari is not a true desert. It has none of the naked, shifting sand dunes that typify the Sahara and other great deserts of the world. In some years the rains may exceed twenty — once even forty — inches, awakening a magic green paradise.” Mark Owens, Cry of the Kalahari.
Articolo in rivista - Review Essay
Detrital-zircon geochronology; Drainage changes; Dryland landscape evolution; Dynamic topography; Heavy minerals; Kalahari Basin; Sand petrography; Sediment-routing connectivity; Southern Africa;
English
14-nov-2021
2022
224
January 2022
1
26
103867
none
Garzanti, E., Pastore, G., Stone, A., Vainer, S., Vermeesch, P., Resentini, A. (2022). Provenance of Kalahari Sand: Paleoweathering and recycling in a linked fluvial-aeolian system. EARTH-SCIENCE REVIEWS, 224(January 2022), 1-26 [10.1016/j.earscirev.2021.103867].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/351111
Citazioni
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
Social impact