In this paper we study properties of Toeplitz operators on weighted Bergman spaces of bounded strongly pseudoconvex domains. We prove that a Toeplitz operator built using a weighted Bergman kernel of weight β and integrating against a measure μ maps continuously a weighted Bergman space Ap1α1 (D) into Ap2α2 (D) if and only if μ is a (λ, γ)-skew Carleson measure, where λ = 1 + 1/p1 - 1/p2 and γ = 1 l (β + α1/p1 - α2/p2). This generalizes results obtained by Pau and Zhao on the unit ball, and by Abate, Raissy and Saracco on a smaller class of Toeplitz operators on strongly pseudoconvex domains.
Abate, M., Mongodi, S., Raissy, J., Bercovici, H. (2020). Toeplitz operators and skew carleson measures for weighted bergman spaces on strongly pseudoconvex domains. JOURNAL OF OPERATOR THEORY, 84(2), 339-364 [10.7900/jot.2019jun03.2260].
Toeplitz operators and skew carleson measures for weighted bergman spaces on strongly pseudoconvex domains
Mongodi S.
;Raissy J.
;
2020
Abstract
In this paper we study properties of Toeplitz operators on weighted Bergman spaces of bounded strongly pseudoconvex domains. We prove that a Toeplitz operator built using a weighted Bergman kernel of weight β and integrating against a measure μ maps continuously a weighted Bergman space Ap1α1 (D) into Ap2α2 (D) if and only if μ is a (λ, γ)-skew Carleson measure, where λ = 1 + 1/p1 - 1/p2 and γ = 1 l (β + α1/p1 - α2/p2). This generalizes results obtained by Pau and Zhao on the unit ball, and by Abate, Raissy and Saracco on a smaller class of Toeplitz operators on strongly pseudoconvex domains.File | Dimensione | Formato | |
---|---|---|---|
2020 - toeplop (w Abate, Raissy) - JOT.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
232.23 kB
Formato
Adobe PDF
|
232.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.