The aim of this short note is to investigate the geometry of weakly complete subdomains of Grauert-type surfaces, i.e., open connected sets D, sitting inside a Grauert-type surface X, which admit a smooth plurisubharmonic exhaustion function. We prove that they are either modifications of Stein spaces or Grauert-type surfaces themselves, and we apply these results to the special case of Hopf surfaces.

Mongodi, S. (2019). Weakly complete domains in Grauert-type surfaces. ANNALI DI MATEMATICA PURA ED APPLICATA, 198(4), 1185-1189 [10.1007/s10231-018-0814-0].

Weakly complete domains in Grauert-type surfaces

Mongodi S.
2019

Abstract

The aim of this short note is to investigate the geometry of weakly complete subdomains of Grauert-type surfaces, i.e., open connected sets D, sitting inside a Grauert-type surface X, which admit a smooth plurisubharmonic exhaustion function. We prove that they are either modifications of Stein spaces or Grauert-type surfaces themselves, and we apply these results to the special case of Hopf surfaces.
Articolo in rivista - Articolo scientifico
Grauert-type surfaces; Levi problem; Weakly complete;
English
11-dic-2018
2019
198
4
1185
1189
reserved
Mongodi, S. (2019). Weakly complete domains in Grauert-type surfaces. ANNALI DI MATEMATICA PURA ED APPLICATA, 198(4), 1185-1189 [10.1007/s10231-018-0814-0].
File in questo prodotto:
File Dimensione Formato  
2019 - domains Grauert - AMPA.pdf

Solo gestori archivio

Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 578.12 kB
Formato Adobe PDF
578.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/349852
Citazioni
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
Social impact