In a previous work, we classified weakly complete surfaces which admit a real analytic plurisubharmonic exhaustion function; we showed that, if they are not proper over a Stein space, then they admit a pluriharmonic function, with compact Levi-flat level sets foliated with dense complex leaves. We called these Grauert type surfaces. In this note, we investigate some properties of these surfaces. Namely, we prove that the only compact curves that can be contained in them are negative in the sense of Grauert and that the level sets of the pluriharmonic function are connected, thus completing the analogy with the Cartan-Remmert reduction of a holomorphically convex space. Moreover, in our classification theorem, we had to pass to a double cover to produce the pluriharmonic function; the last part of the present paper is devoted to the construction of an example where passing to a double cover cannot be avoided.
Mongodi, S., Slodkowski, Z., Tomassini, G. (2017). Some properties of Grauert type surfaces. INTERNATIONAL JOURNAL OF MATHEMATICS, 28(8) [10.1142/S0129167X1750063X].
Some properties of Grauert type surfaces
Mongodi S.
;
2017
Abstract
In a previous work, we classified weakly complete surfaces which admit a real analytic plurisubharmonic exhaustion function; we showed that, if they are not proper over a Stein space, then they admit a pluriharmonic function, with compact Levi-flat level sets foliated with dense complex leaves. We called these Grauert type surfaces. In this note, we investigate some properties of these surfaces. Namely, we prove that the only compact curves that can be contained in them are negative in the sense of Grauert and that the level sets of the pluriharmonic function are connected, thus completing the analogy with the Cartan-Remmert reduction of a holomorphically convex space. Moreover, in our classification theorem, we had to pass to a double cover to produce the pluriharmonic function; the last part of the present paper is devoted to the construction of an example where passing to a double cover cannot be avoided.File | Dimensione | Formato | |
---|---|---|---|
2017 - some prop grauert (w Slodkowski, Tomassini) - IJM.pdf
Solo gestori archivio
Tipologia di allegato:
Publisher’s Version (Version of Record, VoR)
Dimensione
260.37 kB
Formato
Adobe PDF
|
260.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.