The growing utilization of renewable and residual biomasses for environmental preservation and remediation are important goals to be pursued to minimize the environmental impact of human activities. In this paper, sodium alginate (derived from brown algae) was crosslinked using chitosan (mainly derived from the exoskeleton of crustaceans) in the presence of biowaste-derived substances isolated from green compost (BBS-GC), to produce hydrogels and dried films. The obtained materials were tested as adsorbents for wastewater remediation. To this purpose, gels were characterized using a multi-analytical approach and used as active substrates for the removal of three differently-charged molecules, chosen as model pollutants: crystal violet, rhodamine B, and orange II. The effectiveness of the gel formulations was demonstrated and attributed to the variety of active functionalities introduced by the different precursors, the structural factors and the peculiar physicochemical properties of the resulting materials.

Tummino, M., Magnacca, G., Cimino, D., Laurenti, E., Nisticò, R. (2020). The innovation comes from the sea: Chitosan and alginate hybrid gels and films as sustainable materials for wastewater remediation. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 21(2), 1-16 [10.3390/ijms21020550].

The innovation comes from the sea: Chitosan and alginate hybrid gels and films as sustainable materials for wastewater remediation

Nisticò, Roberto.
Ultimo
2020

Abstract

The growing utilization of renewable and residual biomasses for environmental preservation and remediation are important goals to be pursued to minimize the environmental impact of human activities. In this paper, sodium alginate (derived from brown algae) was crosslinked using chitosan (mainly derived from the exoskeleton of crustaceans) in the presence of biowaste-derived substances isolated from green compost (BBS-GC), to produce hydrogels and dried films. The obtained materials were tested as adsorbents for wastewater remediation. To this purpose, gels were characterized using a multi-analytical approach and used as active substrates for the removal of three differently-charged molecules, chosen as model pollutants: crystal violet, rhodamine B, and orange II. The effectiveness of the gel formulations was demonstrated and attributed to the variety of active functionalities introduced by the different precursors, the structural factors and the peculiar physicochemical properties of the resulting materials.
Articolo in rivista - Articolo scientifico
Alginate; Biopolymers; Biowaste valorisation; Chitosan; Hydrogels; Wastewater remediation;
English
1
16
16
Tummino, M., Magnacca, G., Cimino, D., Laurenti, E., Nisticò, R. (2020). The innovation comes from the sea: Chitosan and alginate hybrid gels and films as sustainable materials for wastewater remediation. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 21(2), 1-16 [10.3390/ijms21020550].
File in questo prodotto:
File Dimensione Formato  
2020_Tummino_IntJMolSci.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia di allegato: Publisher’s Version (Version of Record, VoR)
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10281/349515
Citazioni
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
Social impact